Nitrogen-doped carbon (NC) materials have been proposed as next-generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and reduce costs, but these alternatives usually exhibit low activity and/or gradual deactivation during use. Here, we develop new 2D sandwich-like zeolitic imidazolate framework (ZIF) derived graphene-based nitrogen-doped porous carbon sheets (GNPCSs) obtained by in situ growing ZIF on graphene oxide (GO). Compared to commercial Pt/C catalyst, the GNPCSs show comparable onset potential, higher current density, and especially an excellent tolerance to methanol and superior durability in the ORR. Those properties might be attributed to a synergistic effect between NC and graphene with regard to structure and composition. Furthermore, higher open-circuit voltage and power density are obtained in direct methanol fuel cells.
Oxygen evolution: A 3D nickel foam/porous carbon/anodized nickel electrode was designed for the oxygen evolution reaction (see picture). The conductive porous carbon membrane, which is derived from a zeolite imidazolate framework, plays a key role as an interlayer to both protect the inner instable Ni foam and support the outermost oxygen‐evolving Ni catalyst layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.