BackgroundOrchids have numerous species, and their speciation rates are presumed to be exceptionally high, suggesting that orchids are continuously and actively evolving. The wide diversity of orchids has attracted the interest of evolutionary biologists. In this study, a new orchid was discovered on Danxia Mountain in Guangdong, China. However, the phylogenetic clarification of this new orchid requires further molecular, morphological, and phytogeographic analyses.Methodology/Principal FindingsA new orchid possesses a labellum with a large Y-shaped callus and two sacs at the base, and cylindrical, fleshy seeds, which make it distinct from all known orchid genera. Phylogenetic methods were applied to a matrix of morphological and molecular characters based on the fragments of the nuclear internal transcribed spacer, chloroplast matK, and rbcL genes of Orchidaceae (74 genera) and Calypsoeae (13 genera). The strict consensus Bayesian inference phylogram strongly supports the division of the Calypsoeae alliance (not including Dactylostalix and Ephippianthus) into seven clades with 11 genera. The sequence data of each species and the morphological characters of each genus were combined into a single dataset. The inferred Bayesian phylogram supports the division of the 13 genera of Calypsoeae into four clades with 13 subclades (genera). Based on the results of our phylogenetic analyses, Calypsoeae, under which the new orchid is classified, represents an independent lineage in the Epidendroideae subfamily.ConclusionsAnalyses of the combined datasets using Bayesian methods revealed strong evidence that Calypsoeae is a monophyletic tribe consisting of eight well-supported clades with 13 subclades (genera), which are all in agreement with the phytogeography of Calypsoeae. The Danxia orchid represents an independent lineage under the tribe Calypsoeae of the subfamily Epidendroideae. This lineage should be treated as a new genus, which we have named Danxiaorchis, that is parallel to Yoania. Both genera are placed under the subtribe Yoaniinae.
BackgroundThe Aerides–Vanda alliance is a complex group in the subtribe Aeridinae (subfamily Epidendroideae, Orchidaceae). Some phylogenetic systems of this alliance have been previously proposed based on molecular and morphological analyses. However, several taxonomic problems within this alliance as well as between it and its allies remain unsolved.Methodology/Principal FindingsWe utilized ITS and five plastid DNA regions in this phylogenetic analysis. Consensus trees strongly indicate that the Aerides–Vanda alliance is monophyletic, and the 14 genera of this alliance can be grouped into the following clades with 14 subclades: 1. Aerides, comprising two subclades: Rhynchostylis and Aerides; 2. Ascocentropsis; 3. Papilionanthe; 4. Vanda, comprising five subclades: Neofinetia, Christensonia, Seidenfadenia, Ascocentrum, and Vanda–Trudelia, in which Vanda and Trudelia form a subclade; 5. Tsiorchis, comprising three subclades: Chenorchis, Tsiorchis, and two species of Ascocentrum; 6. Paraholcoglossum; and 7. Holcoglossum. Among the 14 genera, only Ascocentrum is triphyletic: two species of the Ascocentrum subclade, an independent subclade Ascocentrum subclade in the Tsiorchis clade; the Ascocentrum subclade in the Vanda clade; and one species in the Holcoglossum clade. The Vanda and Trudelia species belong to the same subclade. The molecular conclusion is consistent with their morphological characteristics.ConclusionsWe elucidate the relationship among the 14 genera of the Aerides–Vanda alliance. Our phylogenetic results reveal that the Aerides–Vanda alliance is monophyletic, but it can be divided into 14 genera. The data prove that Ascocentrum is triphyletic. Plants with elongate-terete leaves and small flowers should be treated as a new genus, Pendulorchis. Saccolabium himalaicum (Ascocentrum himalaicum) should be transferred to Pendulorchis. Ascocentrum pumilum, endemic to Taiwan, should be transferred to Holcoglossum. A new combination, Holcoglossum pumilum, was also established. Trudelia should not be recognized as an independent genus. Two new species, Pendulorchis gaoligongensis and Holcoglossum singchianum, were described as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.