Abstract-In this paper, high resolution range profile-jet engine modulation (HRRP-JEM) analysis is extended by including quantitative estimation of the jet engine location and extraction of the JEM microDoppler component. Based on a parametric model of the range cell data, signal eccentricity was introduced for the purpose of determining the jet engine location. Then, complex empirical mode decomposition (CEMD) was employed to extract the embedded JEM component. The signal eccentricity also served as an auxiliary means of CEMD-based micro-Doppler extraction. Application to the simulated HRRP-JEM data demonstrated that the analysis results described in this paper could be useful for advanced radar target recognition with HRRP-JEM.
To overcome the limitations of the ionization chamber-based tritium monitor, a design for a multichannel plastic scintillator-based detection chamber for monitoring tritium in air is proposed. The performance of the chamber was characterized by Monte Carlo-based calculations with various design parameters such as thickness of the plastic scintillator (t) and number of channels (n). We considered the volume and detection efficiency of the chamber to evaluate the performance of the detector. The expected counting rate curve was in good agreement with the expected simplified physical model. The minimum detectable activity (MDA) was shown at t = 0.5 mm and n = 48 and estimated to be 29.9 kBq/m3. Compared with the experimentally estimated MDA, the relative difference was approximately 24%. However, this difference is understandable considering the different lower level of discrimination and light loss during transportation assumed in the model. The proposed tritium detection chamber is expected to be useful for environmental monitoring at some level as well as for monitoring of tritium leaks from fusion or CANada Deuterium Uranium (CANDU)-type reactors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.