Rechargeable silicon anode lithium ion batteries (SLIBs) have attracted tremendous attention because of their merits, including a high theoretical capacity, low working potential, and abundant natural sources. The past decade has witnessed significant developments in terms of extending the lifespan and maintaining high capacities of SLIBs. However, the detrimental issue of low initial Coulombic efficiency (ICE) toward SLIBs is causing more and more attention in recent years because ICE value is a core index in full battery design that profoundly determines the utilization of active materials and the weight of an assembled battery. Herein, a comprehensive review is presented of recent advances in solutions for improving ICE of SLIBs. From design perspectives, the strategies for boosting ICE of silicon anodes are systematically categorized into several aspects covering structure regulation, prelithiation, interfacial design, binder design, and electrolyte additives. The merits and challenges of various approaches are highlighted and discussed in detail, which provides valuable insights into the rational design and development of state‐of‐the‐art techniques to deal with the deteriorative issue of low ICE of SLIBs. Furthermore, conclusions and future promising research prospects for lifting ICE of SLIBs are proposed at the end of the review.
Lithium (Li) dendrites in Li anodes, and dissolution and migration of manganese (Mn) ions in LiMn2O4 (LMO) cathodes, have hampered these extraordinary electrode materials from being efficiently applied in high performance Li batteries. Here, a novel, bifunctional, biobased composite gel polymer electrolyte (c‐GPE) is created to simultaneously deal with the two critical issues. The skeleton of c‐GPE is constructed from a sandwich structure composed of porous polydopamine spheres and two layers of the environmentally friendly soy protein isolate‐based nanofiber membranes, and the carbonized polydopamine spheres are coated without any binder on the surface of the membranes. After a facile and innocuous preparation process, the skeleton material displays excellent thermal stability and good affinity to liquid electrolyte, which endows c‐GPE with significant functions of effective mitigation of the dissolution of Mn ions, and chelation of the fleeing Mn ions, as well as the dramatic suppression of Li dendrite growth. Consequently, the LMO/Li batteries involving c‐GPE show a great improvement in the cycling stability and rate performance compared with those of the cells based on commercial Celgard 2400. This work will be quite promising to meet the distinct requirements from Li batteries and provide a high‐efficiency and safe biobased GPE for next generation energy storage systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.