The connected vertex cover (CVC) problem, which has many important applications, is a variant of the vertex cover problem, such as wireless network design, routing, and wavelength assignment problem. A good algorithm for the problem can help us improve engineering efficiency, cost savings, and resources consumption in industrial applications. In this work, we present an efficient algorithm GRASP-CVC (Greedy Randomized Adaptive Search Procedure for Connected Vertex Cover) for CVC in general graphs. The algorithm has two main phases, i.e., construction phase and local search phase. In the construction phase, to construct a high quality feasible initial solution, we design a greedy function and a restricted candidate list. In the local search phase, the configuration checking strategy is adopted to decrease the cycling problem. The experimental results demonstrate that GRASP-CVC is better than other comparison algorithms in terms of effectivity and efficiency.
Motivation: Exploring the potential long noncoding RNA (lncRNA)-disease associations (LDAs) plays a critical role for understanding disease etiology and pathogenesis. Given the high cost of biological experiments, developing a computational method is a practical necessity to effectively accelerate experimental screening process of candidate LDAs. However, under the high sparsity of LDA dataset, many computational models hardly exploit enough knowledge to learn comprehensive patterns of node representations. Moreover, although the metapath-based GNN has been recently introduced into LDA prediction, it discards intermediate nodes along the meta-path and results in information loss. Results: This paper presents a new multi-view contrastive heterogeneous graph attention network (GAT) for lncRNA-disease association prediction, MCHNLDA for brevity. Specifically, MCHNLDA firstly leverages rich biological data sources of lncRNA, gene and disease to construct two-view graphs, feature structural graph of feature schema view and lncRNA-gene-disease heterogeneous graph of network topology view. Then, we design a cross-contrastive learning task to collaboratively guide graph embeddings of the two views without relying on any labels. In this way, we can pull closer the nodes of similar features and network topology, and push other nodes away. Furthermore, we propose a heterogeneous contextual GAT, where long short-term memory network is incorporated into attention mechanism to effectively capture sequential structure information along the meta-path. Extensive experimental comparisons against several state-of-the-art methods show the effectiveness of proposed framework.The code and data of proposed framework is freely available at https://github.com/zhaoxs686/MCHNLDA.
The diversified top-k weight clique (DTKWC) search problem is an important generalization of the diversified top-k clique (DTKC) search problem with extensive applications, which extends the DTKC search problem by taking into account the weight of vertices. In this paper, we formulate DTKWC search problem using mixed integer linear program constraints and propose an efficient hybrid evolutionary algorithm (HEA-D) that combines a clique-based crossover operator and an effective simulated annealing-based local optimization procedure to find high-quality local optima. The experimental results show that HEA-D performs much better than the existing methods on two representative real-world benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.