Blends of poly(l-lactic acid) (PLA) and poly-(butylene succinate) (PBS) were prepared with various compositions by a melt-mixing method and the phase behavior, miscibility, and morphology were investigated using differential scanning calorimetry, wide-angle X-ray diffraction, small-angle X-ray scattering techniques, and polarized optical microscopy. The blend system exhibited a single glass transition over the entire composition range and its temperature decreased with an increasing weight fraction of the PBS component, but this depression was not significantly large. The DSC thermograms showed two distinct melting peaks over the entire composition range, indicating that these materials was classified as semicrystalline/semicrystalline blends. A depression of the equilibrium melting point of the PLA component was observed and the interaction parameter between PLA and PBS showed a negative value of Ϫ0.15, which was derived using the Flory-Huggins equation. Small-angle X-ray scattering revealed that, in the blend system, the PBS component was expelled out of the interlamellar regions of PLA, which led to a significant decrease of a long-period, amorphous layer thickness of PLA. For more than a 40% PBS content, significant crystallization-induced phase separation was observed by polarized optical microscopy.
Gelatinized starches were prepared with various content of glycerol and were investigated in terms of the effect of the glycerol addition on characteristics of starch and its blends. Poly (L‐lactic acid) (PLA) with various ratios of linear/star shaped PLA and starch gelatinized with various ratios of water/glycerol were melt‐blended by using twin screw mixer. The blends were characterized by DSC thermal analysis, tensile test and morphological analysis. Gelatinization of starch was found to lead to destruction or diminution of hydrogen bonding in granules and a decrease of crystallinity of starch. DSC data showed that starch played a role as a nucleating agent and glycerol as plasticizer contributed to an improvement in crystallinity in PLA blends. When the content of starch increased, the size of spherulites in PLA blends was smaller and less regular. In the case of PLA/pure starch blends, the voids appeared, which were formed by the separation of starch particles from the matrix. But for PLA/gelainized starch blends, these voids were not observed. In the case of blends with linear PLA and starch gelatinized with water/glycerol ratio of 100/40, the greatest superiority of mechanical properties was shown and the toughness was improved compared with PLA/pure starch blends.
Blends of poly(L-lactic acid) (PLLA) with two kinds of poly[(R)-3-hydroxybutyrate] (PHB) having different molecular weights, commercial-grade bacterial PHB (bacterial-PHB) and ultrahigh molecular weight PHB (UHMW-PHB), were prepared by the solvent-casting method and uniaxially drawn at two drawing temperatures, around PHB's T(g) (2 degrees C) for PHB-rich blends and around PLLA's T(g) (60 degrees C) for PLLA-rich blends. Differential scanning calorimetry analysis showed that this system was immiscible over the entire composition range. Mechanical properties of all of the samples were improved in proportion to the draw ratio. Although PLLA domains in bacterial-PHB-rich blends remained almost unstretched during cold drawing, a good interfacial adhesion between two polymers and the reinforcing role of PLLA components led to enhanced mechanical properties proportionally to the PLLA content at the same draw ratio. On the contrary, in the case of UHMW-PHB-rich blends, the minor component PLLA was found to be also oriented by cold drawing in ice water due to an increase in the interfacial entanglements caused by the very long chain length of the matrix polymer. As a result, their mechanical properties were considerably improved with increasing PLLA content compared with the bacterial-PHB system. Scanning electron microscopy observations on the surface and cross-section revealed that a layered structure with uniformly oriented microporous in the interior was obtained by selectively removal of PLLA component after simple alkaline treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.