Twelve genes involved in thiamin biosynthesis in prokaryotes have been identified and overexpressed. Of these, six are required for the thiazole biosynthesis (thiFSGH, thil, and dxs), one is involved in the pyrimidine biosynthesis (thiC), one is required for the linking of the thiazole and the pyrimidine (thiE), and four are kinase genes (thiD, thiM, thiL, and pdxK). The specific reactions catalyzed by ThiEF, Dxs, ThiDM, ThiL, and PdxK have been reconstituted in vitro and ThiS thiocarboxylate has been identified as the sulfur source. The X-ray structures of thiamin phosphate synthase and 5-hydroxyethyl-4-methylthiazole kinase have been completed. The genes coding for the thiamin transport system (thiBPQ) have also been identified. Remaining problems include the cloning and characterization of thiK (thiamin kinase) and the gene(s) involved in the regulation of thiamin biosynthesis. The specific reactions catalyzed by ThiC (pyrimidine formation), and ThiGH and ThiI (thiazole formation) have not yet been identified.
Cardiomyocytes generated from embryonic stem cells (ESCs) and induced pluripotent stem (iPS) cells are suggested for repopulation of destroyed myocardium. Because contractile properties are crucial for functional regeneration, we compared cardiomyocytes differentiated from ES cells (ESC-CMs) and iPS cells (iPS-CMs). Native myocardium served as control. Murine ESCs or iPS cells were differentiated 11 d in vitro and cocultured 5-7 d with irreversibly injured myocardial tissue slices. Vital embryonic ventricular tissue slices of similar age served for comparison. Force-frequency relationship (FFR), effects of Ca(2+), Ni(2+), nifedipine, ryanodine, beta-adrenergic, and muscarinic modulation were studied during loaded contractions. FFR was negative for ESC-CMs and iPS-CMs. FFR was positive for embryonic tissue and turned negative after treatment with ryanodine. In all groups, force of contraction and relaxation time increased with the concentration of Ca(2+) and decreased with nifedipine. Force was reduced by Ni(2+). Isoproterenol (1 microM) increased the force most pronounced in embryonic tissue (207+/-31%, n=7; ESC-CMs: 123+/-5%, n=4; iPS-CMs: 120+/-4%, n=8). EC(50) values were similar. Contractile properties of iPS-CMs and ESC-CMs were similar, but they were significantly different from ventricular tissue of comparable age. The results indicate immaturity of the sarcoplasmic reticulum and the beta-adrenergic response of iPS-CMs and ESC-CMs.
Aims: Induced pluripotent stem (iPS) cells have a developmental potential similar to that of blastocyst-derived embryonic stem (ES) cells and may serve as an autologous source of cells for tissue repair, in vitro disease modelling and toxicity assays. Here we aimed at generating iPS cell-derived cardiomyocytes (CMs) and comparing their molecular and functional characteristics with CMs derived from native murine ES cells. Methods and Results: Beating cardiomyocytes were generated using a mass culture system from murine N10 and O9 iPS cells as well as R1 and D3 ES cells. Transcripts of the mesoderm specification factor T-brachyury and non-atrial cardiac specific genes were expressed in differentiating iPS EBs. Using immunocytochemistry to determine the expression and intracellular organisation of cardiac specific structural proteins we demonstrate strong similarity between iPS-CMs and ES-CMs. In line with a previous study electrophysiological analyses showed that hormonal response to β-adrenergic and muscarinic receptor stimulation was intact. Action potential (AP) recordings suggested that most iPS-CMs measured up to day 23 of differentiation are of ventricular-like type. Application of lidocaine, Cs+, SEA0400 and verapamil+ nifedipine to plated iPS-EBs during multi-electrode array (MEA) measurements of extracellular field potentials and intracellular sharp electrode recordings of APs revealed the presence of INa, If, INCX, and ICaL, respectively, and suggested their involvement in cardiac pacemaking, with ICaL being of major importance. Furthermore, iPS-CMs developed and conferred force to avitalized ventricular tissue that was responsive to β-adrenergic stimulation. Conclusions: Our data demonstrate that the cardiogenic potential of iPS cells is comparable to that of ES cells and that iPS-CMs possess all fundamental functional elements of a typical cardiac cell, including spontaneous beating, hormonal regulation, cardiac ion channel expression and contractility. Therefore, iPS-CMs can be regarded as a potentially valuable source of cells for in vitro studies and cellular cardiomyoplasty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.