The separation of benzene derivatives is energy intensive and laborious as a result of the overlapping physicochemical properties of these isomers. Here, we report on the separation of ortho-disubstituted benzene isomers using cucurbit[7]uril (CB7) aqueous solution with more than 92% selectivity. Thermodynamic and kinetic analysis proves that the ortho-isomer has stronger binding ability and slower decomplexation rate constant than the para-and metaisomers when hosted by CB7. Optimized host-guest models indicate that the ortho-isomer with the smallest aspect ratio well matches the spherical interior cavity of CB7, resulting in highly stable complexes. Furthermore, laboratory scale-up experiments using commercial xylenes and C8 aromatic fraction of pyrolysis gasoline proved that CB7 is able to separate ortho-xylene (OX) with a remarkable selectivity of up to 83%. We believe that this work accentuates the role of molecular recognition studies using macrocyclic hosts to improve the quality and energy bill of critical industrial separations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.