Visual attention has been successfully applied in structural prediction tasks such as visual captioning and question answering. Existing visual attention models are generally spatial, i.e., the attention is modeled as spatial probabilities that re-weight the last conv-layer feature map of a CNN encoding an input image. However, we argue that such spatial attention does not necessarily conform to the attention mechanism -a dynamic feature extractor that combines contextual fixations over time, as CNN features are naturally spatial, channel-wise and multi-layer. In this paper, we introduce a novel convolutional neural network dubbed SCA-CNN that incorporates Spatial and Channelwise Attentions in a CNN. In the task of image captioning, SCA-CNN dynamically modulates the sentence generation context in multi-layer feature maps, encoding where (i.e., attentive spatial locations at multiple layers) and what (i.e., attentive channels) the visual attention is. We evaluate the proposed SCA-CNN architecture on three benchmark image captioning datasets: Flickr8K, Flickr30K, and MSCOCO. It is consistently observed that SCA-CNN significantly outperforms state-of-the-art visual attention-based image captioning methods.
Factorization Machines (FMs) are a supervised learning approach that enhances the linear regression model by incorporating the second-order feature interactions. Despite effectiveness, FM can be hindered by its modelling of all feature interactions with the same weight, as not all feature interactions are equally useful and predictive. For example, the interactions with useless features may even introduce noises and adversely degrade the performance. In this work, we improve FM by discriminating the importance of different feature interactions. We propose a novel model named Attentional Factorization Machine (AFM), which learns the importance of each feature interaction from data via a neural attention network. Extensive experiments on two real-world datasets demonstrate the effectiveness of AFM. Empirically, it is shown on regression task AFM betters FM with a 8.6% relative improvement, and consistently outperforms the state-of-the-art deep learning methods Wide&Deep [Cheng et al., 2016] and DeepCross [Shan et al., 2016] with a much simpler structure and fewer model parameters. Our implementation of AFM is publicly available at: https://github. com/hexiangnan/attentional factorization machine
Original SAE SP-AEN Train Test Test SUN CUB Train Test Test (a) (b) Figure 1: (a) Attribute variance heat maps of the 312 attributes in CUB birds [60] and the 102 attributes in SUN scenes [47] (lighter color indicates lower variance, i.e., lower discriminability) and the t-SNE [35] visualizations of the test images represented by all attributes (left) and only the high-variance ones (right). Some of the low-variance attributes (the lighter part to the left of the cut-off line) discarded at training are still needed in discriminating unseen test classes. (b) Comparison of reconstructed images using SAE [25] and our proposed SP-AEN method, which is shown to retain sufficient semantics for photo-realistic reconstruction. AbstractWe propose a novel framework called Semantics-Preserving Adversarial Embedding Network (SP-AEN) for zero-shot visual recognition (ZSL), where test images and their classes are both unseen during training. SP-AEN aims to tackle the inherent problem -semantic lossin the prevailing family of embedding-based ZSL, where some semantics would be discarded during training if they are non-discriminative for training classes, but could become critical for recognizing test classes. Specifically, SP-AEN prevents the semantic loss by introducing an independent visual-to-semantic space embedder which disentangles the semantic space into two subspaces for the two arguably conflicting objectives: classification and reconstruction. Through adversarial learning of the two subspaces, SP-AEN can transfer the semantics from the reconstructive subspace to the discriminative one, accomplishing the improved zero-shot recognition of unseen classes. Comparing * Corresponding Author with prior works, SP-AEN can not only improve classification but also generate photo-realistic images, demonstrating the effectiveness of semantic preservation. On four popular benchmarks: CUB, AWA, SUN and aPY, SP-AEN considerably outperforms other state-of-the-art methods by an absolute performance difference of 12.2%, 9.3%, 4.0%, and 3.6% in terms of harmonic mean values [63].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.