IL-35 is a member of the IL-12 family of cytokines consisting of IL-12 p35 subunit and IL-12 p40-related protein subunit, EBV-induced gene 3 (EBI3). IL-35 functions through IL-35R and has a potent immune suppressive activity. Although IL-35 has been demonstrated to be produced by regulatory T cells, gene expression analysis has revealed that IL-35 is likely to have wider distribution including expression in cancer cells. In this study we have demonstrated that IL-35 is produced in human cancer tissues such as large B cell lymphoma, nasopharyngeal carcinoma and melanoma. In order to determine the roles of tumor-derived IL-35 in tumorigenesis and tumor immunity, we generated IL-35 producing plasmacytoma J558 and B16 melanoma cells, and observed that the expression of IL-35 in cancer cells does not affect their growth and survival in vitro, but stimulates tumorigenesis in both immune competent and Rag1/2 deficient mice. Tumor-derived IL-35 increases CD11b+Gr1+ myeloid cell accumulation in tumor microenvironment, and thereby promotes tumor angiogenesis. In immune competent mice, spontaneous CTL responses to tumors are diminished. IL-35 does not directly inhibit tumor antigen specific CD8+ T cell activation, differentiation and effector functions. However, IL-35-treated cancer cells had increased expression of gp130 and reduced sensitivity to CTL destruction. Thus, our study indicates novel functions of IL-35 in promoting tumor growth via enhancing myeloid cell accumulation, tumor angiogenesis and suppression of tumor immunity.
Herbal medicines (HMs) are much appreciated for their significant contribution to human survival and reproduction by remedial and prophylactic management of diseases. Defining the scientific basis of HMs will substantiate their value and promote their modernization. Ever-increasing evidence suggests that gut microbiota plays a crucial role in HM therapy by complicated interplay with HM components. This interplay includes such activities as: gut microbiota biotransforming HM chemicals into metabolites that harbor different bioavailability and bioactivity/toxicity from their precursors; HM chemicals improving the composition of gut microbiota, consequently ameliorating its dysfunction as well as associated pathological conditions; and gut microbiota mediating the interactions (synergistic and antagonistic) between the multiple chemicals in HMs. More advanced experimental designs are recommended for future study, such as overall chemical characterization of gut microbiota-metabolized HMs, direct microbial analysis of HM-targeted gut microbiota, and precise gut microbiota research model development. The outcomes of such research can further elucidate the interactions between HMs and gut microbiota, thereby opening a new window for defining the scientific basis of HMs and for guiding HM-based drug discovery.
Oral decoctions of traditional Chinese medicines (TCMs) serve for therapeutic and prophylactic management of diseases for centuries. Small molecules and polysaccharides are the dominant chemicals co-occurred in the TCM decoction. Small molecules are well-studied by multidisciplinary elaborations, whereas the role of polysaccharides remains largely elusive. Here we explore a gut microbiota-involved mechanism by which TCM polysaccharides restore the homeostasis of gut microbiota and consequently promote the systemic exposure of concomitant small molecules in the decoction. As a case study, ginseng polysaccharides and ginsenosides in Du-Shen-Tang, the decoction of ginseng, were investigated on an over-fatigue and acute cold stress model. The results indicated that ginseng polysaccharides improved intestinal metabolism and absorption of certain ginsenosides, meanwhile reinstated the perturbed holistic gut microbiota, and particularly enhanced the growth of Lactobacillus spp. and Bacteroides spp., two major metabolic bacteria of ginsenosides. By exploring the synergistic actions of polysaccharides with small molecules, these findings shed new light on scientization and rationalization of the classic TCM decoctions in human health care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.