Niobium and aluminum co-doped TiO2 ceramics, i.e., (Nb0.5Al0.5)xTi1−xO2 (x = 0, 0.01, 0.05, 0.1, 0.15, abbreviated as NAT100x) were synthesized via a solid-state reaction route.
A model for the thermoacoustic (TA) emission in both low and high frequency ranges is derived by fully coupled thermal-mechanical analysis. Accordingly, it has been theoretically confirmed that there exists a very wide range of constant (flat) amplitude-frequency response mostly in ultrasonic region for TA emission from any solid, and its existence conditions and frequency range as well as calculation formula are clarified and particularly given. The theory developed in this work agrees well with the experimental results, and is applicable to a variety of TA emission problems.
Ultrasonic trapping of small particles by sharp edges vibrating in a flexural mode is reported. Two rectangular metal plates with a sharp edge are mechanically excited to vibrate in a flexural mode by the piezoelectric rings which are pressed between them by a bolt structure. Small particles such as mint seeds and flying color seeds can be attracted to the sharp edges of the plates. Relationship between input power applied to the piezoelectric rings and the number of trapped particles is experimentally investigated for mint seeds and flying color seeds in water and air. The result shows that for a given type of particle, there exists an input power at which the number of trapped particles is a maximum. Mechanism analysis shows that nodes or antinodes of acoustic pressure of the sound field near the sharp edges are responsible for the trapping.
Numerous experimental data on the rapid solidification of eutectic systems exhibit the formation of metastable solid phases with the initial (nominal) chemical composition. This fact is explained by suppression of eutectic decomposition due to diffusionless (chemically partitionless) solidification beginning at a high but a finite growth velocity of crystals. A model considering the diffusionless growth is developed in the present work to analyze the atomic diffusion ahead of lamellar eutectic couples growing into supercooled liquid. A general solution of the model is presented from which two regimes are followed. The first presents a diffusion-limited regime with the existence of eutectic decomposition if the solid-liquid interface velocity is smaller than the characteristic diffusion speed in the bulk liquid. The second shows suppression of eutectic decomposition under diffusionless transformation from liquid to one-phase solid if the solid-liquid interface velocity overcomes characteristic diffusion speed in the bulk liquid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.