The purpose of this study is to diagnose mesoscale factors responsible for the formation and development of an extreme rainstorm that occurred on 20 July 2021 in Zhengzhou, China. The rainstorm produced 201.9 mm rainfall in one hour, breaking the record of mainland China for 1-h rainfall accumulation in the past 73 years. Using 2-km continuously cycled analyses with 6-min updates that were produced by assimilating observations from radar and dense surface networks with a four-dimensional variational (4DVar) data assimilation system, we illustrate that the modification of environmental easterlies by three mesoscale disturbances played a critical role in the development of the rainstorm. Among the three systems, a meso-beta-scale low pressure system (mesolow) that developed from an inverted trough southwest of Zhengzhou was key to the formation and intensification of the rainstorm. We show that the rainstorm formed via sequential merging of three convective cells, which initiated along the convergence bands in the mesolow. Further, we present evidence to suggest that the mesolow and two terrain-influenced flows near the Taihang mountains north of Zhengzhou, including a barrier jet and a downslope flow, contributed to the local intensification of the rainstorm and the intense 1-h rainfall. The three mesoscale features co-existed near Zhengzhou in the several hours before the extreme one-hour rainfall and enhanced local wind convergence and moisture transport synergistically. Our analysis also indicated that the strong midlevel south/southwesterly winds from the mesolow along with the gravity-current-modified low-level northeasterly barrier jet enhanced the vertical wind shear, which provided favorable local environment supporting the severe rainstorm.
The interannual variation of springtime extreme precipitation (SEP) days in North China (NC) and their reliance on atmospheric circulation patterns are studied by using the continuous daily record of 396 rain gauges and the fifth generation of the European Centre for Medium-Range Weather Forecasts atmospheric reanalysis during 1979–2019. The SEP days are defined as the days when at least 10% of rain gauges in NC record daily precipitation no less than 10.5 mm. Results show that the number of SEP days shows large interannual variability but no significant trend in the study period. Using the objective classification method of the obliquely rotated principal analysis in T-mode, we classify the atmospheric circulation into five different patterns based on the geopotential height at 700 hPa. Three circulation patterns all have fronts and are associated with strong southerly wind, leading to 88% of SEP days in NC. The strong southerly wind may provide moisture and dynamic forcing for the frontal precipitation. The interannual variation of SEP days is related with the number of the three above-mentioned dominant circulation patterns. Further analysis shows that the West Pacific pattern could be one of the possible climate variability modes related to SEP days. This study reveals that the daily circulation pattern may be the linkage between SEP days and climate variability modes in NC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.