The morphological and optical features of the corneal lens and retina have been examined in the posterior large stemma of the larva of the tiger beetle (Cicindela chinensis). A cup-shaped retina was positioned 55+/-6microm beneath the posterior margin of the corneal lens, which was 479+/-20microm in diameter and 391+/-18microm in thickness (n=41). A light path through an isolated corneal lens showed that the object at infinite distance was focused on the distal margin of the retina. Geometrical optics gave a value of 334+/-15microm (n=55) for the posterior focal length of the corneal lens. The refractive index of the corneal lens was estimated to be around 1.8, if the lens was considered to be homogenous in structure. The internal structure of the lens, including concentric lamellae, was presumed to contribute to such a high refractive index, because this was higher than that of insect cuticle. The retinal structure and how images were blurred at different focus levels were also examined. Data obtained for optics of the corneal lens and retinal structures are discussed with reference to the distinct visual behavior of the larva.
The morphology of visual interneurons in the tiger beetle larva was identified after recording their responses. Stained neurons were designated as either medulla or protocerebral neurons according to the location of their cell bodies. Medulla neurons were further subdivided into three groups. Afferent medulla neurons extended processes distally in the medulla neuropil and a single axon to the brain through the optic nerve. They received their main input from stemmata on the ipsilateral side. Two distance-sensitive neurons, near-by sensitive and far-sensitive neurons, were also identified. Atypical medulla neurons extended their neurites distally in the medulla and proximally to the brain, as afferent medulla neurons, but their input patterns and the shapes of their spikes differed from afferent neurons. Protocerebral neurons sent a single axon to the medulla neuropil. They spread collateral branches in the posterior region of the protocerebrum on its way to the medulla neuropil. They received main input from stemmata on the contralateral side. Medulla intrinsic neurons did not extend an axon to the brain, and received either bilateral or contralateral stemmata input only. The input patterns and discharge patterns of medulla neurons are discussed with reference to their morphology.
Intracellular responses of medulla neurons (second-order visual interneurons) have been examined in the tiger beetle larva. The larva possesses six stemmata on either side of the head, two of which are much larger than the remaining four. Beneath the cuticle housing the stemmata an optic neuropil complex occurs consisting of lamina and medulla neuropils. Response patterns of medulla neurons to illumination and moving objects varied from neurons to neurons. For movement stimuli black discs and a black bar were moved in the rostro-caudal direction above the larva. Comparison of responses to the discs and the bar suggested a spatial summation of responses in some neurons, and tuning to small objects in some neurons. The majority of neurons responded to objects moving at heights of 10 mm and 50 mm with the same discharge pattern. A few neurons, however, showed distance sensitivities responding with an increase of spike discharges to moving objects only at either of the two heights. Such distance sensitivities still remained in one-stemma larvae, three of the four stemmata being occluded. These data are discussed in relation to distinct visual behavior of the larva and with special reference to perception of the hunting range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.