While prime editing enables precise sequence changes in DNA, cellular determinants of prime editing remain poorly understood. Using pooled CRISPRi screens, we discovered that DNA mismatch repair (MMR) impedes prime editing and promotes undesired indel byproducts. We developed PE4 and PE5 prime editing systems in which transient expression of an engineered MMR-inhibiting protein enhances the efficiency of substitution, small insertion, and small deletion prime edits by an average 7.7-fold and 2.0-fold compared to PE2 and PE3 systems, respectively, while improving edit/indel ratios by 3.4-fold in MMR-proficient cell types. Strategic installation of silent mutations near the intended edit can enhance prime editing outcomes by evading MMR. Prime editor protein optimization resulted in a PEmax architecture that enhances editing efficacy by 2.8-fold on average in HeLa cells. These findings enrich our understanding of prime editing and establish prime editing systems that show substantial improvement across 191 edits in seven mammalian cell types. ll
Prostate cancer is the most common cancer in men in America. Currently, steroid receptor coactivators have been proposed to mediate the development and progression of prostate cancer, at times in a steroid-independent manner. Steroid receptor coactivator-3 (SRC-3, p/CIP, AIB1, ACTR, RAC3, and TRAM-1) is a member of the p160 family of coactivators for nuclear hormone receptors including the androgen receptor. SRC-3 is frequently amplified or overexpressed in a number of cancers. However, the role of SRC-3 in cancer cell proliferation and survival is still poorly understood. In this study, we show that SRC-3 is overexpressed in prostate cancer patients and its overexpression correlates with prostate cancer proliferation and is inversely correlated with apoptosis. Consistent with patient data, we have observed that reduction of SRC-3 expression by small interfering RNA decreases proliferation, delays the G 1 -S transition, and increases cell apoptosis of different prostate cancer cell lines. Furthermore, with decreased SRC-3 expression, proliferating cell nuclear antigen and Bcl-2 expression, as well as bromodeoxyuridine incorporation in prostate cancer cells are reduced. Finally, knockdown of SRC-3 with inducible short hairpin RNA expression in prostate cancer cells decreased tumor growth in nude mice. Taken together, these findings indicate that SRC-3 is an important regulator of prostate cancer proliferation and survival. (Cancer Res 2005; 65(17): 7976-83)
Urinary bladder cancer (UBC) patients at muscle invasive stage have poor clinical outcome, due to high propensity for metastasis. Cancer-associated fibroblasts (CAFs), one of the principal constituents of the tumor stroma, play an important role in tumor development. However, it is unclear whether CAFs from UBC induce cell invasion and which signaling pathway is involved. Herein, we found that conditional medium from UBC CAFs (CAF-CM) enhanced the invasion of UBC cells. CAF-CM induced the epithelial-mesenchymal transition (EMT) by regulating expression levels of EMT-associated markers in UBC cells. Higher concentration of TGFβ1 in CAF-CM, comparing with the CM from adjacent normal fibroblast, led to phosphorylation of Smad2 in UBC cells. Additionally, inhibition of TGFβ1 signaling decreased the EMT-associated gene expression, and cancer cell invasion. Interestingly, a long non-coding RNA, ZEB2NAT, was demonstrated to be essential for this TGFβ1-dependent process. ZEB2NAT depletion reversed CAF-CM-induced EMT and invasion of cancer cells, as well as reduced the ZEB2 protein level. Consistently, TGFβ1 mRNA expression is positively correlated with ZEB2NAT transcript and ZEB2 protein levels in human bladder cancer specimens. Our data revealed a novel mechanism that CAFs induces EMT and invasion of human UBC cells through the TGFβ1-ZEB2NAT-ZEB2 axis.
In this study, we examine the potential role of receptorassociated protein 80 (RAP80), a nuclear protein containing two ubiquitin-interacting motifs (UIM), in DNA damage response and double-strand break (DSB) repair. We show that following ionizing radiation and treatment with DNA-damaging agents, RAP80 translocates to discrete nuclear foci that colocalize with those of ;-H2AX. The UIMs and the region of amino acids 204 to 304 are critical for the relocalization of RAP80 to ionizing radiation-induced foci (IRIF). These observations suggest that RAP80 becomes part of a DNA repair complex at the sites of IRIF. We also show that RAP80 forms a complex with the tumor repressor BRCA1 and that this interaction is mediated through the BRCA1 COOH-terminal repeats of BRCA1. The UIMs are not required for the interaction of RAP80 with BRCA1. Knockdown of RAP80 in HEK293 cells significantly reduced DSB-induced homologydirected recombination (HDR). Moreover, inhibition of RAP80 expression by small interfering RNA increased radiosensitivity, whereas increased radioresistance was observed in human breast cancer MCF-7 cells with overexpression of RAP80. Taken together, our data suggest that RAP80 plays an important role in DNA damage response signaling and HDR-mediated DSB repair. We further show that RAP80 can function as a substrate of the ataxia-telangiectasia mutated protein kinase in vitro, which phosphorylates RAP80 at Ser 205 and Ser 402 . We show that this phosphorylation is not required for the migration of RAP80 to IRIF. [Cancer Res 2007;67(14):6647-56]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.