This study mainly investigated the neurotoxicity induced by zinc oxide nanoparticle (ZnO NP) in different-aged mice and the interaction between age and ZnO NP exposure. Sixty adult and old male C57BL/6J mice were assigned to four groups based on a two-factor (age and ZnO NP exposure) design. Results showed that ZnO NPs (5.6 mg/kg, intraperitoneal) induced increased production of pro-inflammatory cytokines in the serum and the brain of mice. A synergistic reaction between aging and ZnO NP exposure occurred regarding serum interleukin 1 (IL-1) and interleukin 6 (IL-6). In the brain, increased oxidative stress level, impaired learning and memory abilities, and hippocampal pathological changes were identified, especially in old mice, following ZnO NP exposure. Then, a potential mechanism of cognitive impairment was examined. The contents of hippocampal cAMP response element binding protein (CREB), phosphorylated CREB, synapsin I, and cAMP were decreased in an age-dependent manner, and the most substantial decrease occurred in old mice treated with ZnO NPs. These findings demonstrated for the first time that aging and ZnO NP exposure synergistically influenced systemic inflammation, and indicated old individuals were more susceptible to ZnO NP-induced neurotoxicity. One of the mechanisms might due to the supression of cAMP/CREB signaling.
Environmental pollutants co-exist and exhibit interaction effects that are different from those associated with a single pollutant. As one of the more commonly manufactured nanomaterials, titanium dioxide nanoparticles (TiO2-NPs) are most likely to bind to other contaminants in water. In this paper, we aimed to study the combined toxicological effects of TiO2-NPs and bisphenol A (BPA) on organism. First, in vitro adsorption experiments were conducted to determine the adsorptive interaction between TiO2-NPs and BPA. Second, zebrafish embryo toxicity tests were performed to monitor for changes in the toxicological effects associated with the two chemicals. The study results demonstrated that adsorptive interactions exist between the two chemicals and increased toxicity effects which included an advanced toxicological effect time, decreased survival, increased morphological abnormalities, and delayed embryo hatching. Also, we suggest that the mode of combined action has a synergistic effect. Based on this, we postulate that concomitant exposure to TiO2-NPs and BPA increased BPA bioavailability and uptake into cells and organisms. Further studies are required to understand the mechanisms of interactions of this mixture.
The mechanical properties of the extracellular matrix play an important role in bio-microenvironment activities. Herein, atomic force microscope (AFM) was used to measure the interaction between Au and Ag nanoparticle (NP) clusters on the surface of human fetal lung cells. Using (3-mercapto-propyl) triethoxysilane (MPTMS), NP clusters were grafted onto the apex of AFM tip, and then, the adhesion force between the tip and the cell was analyzed. The measured adhesion force increased from 92 pN for AFM tip to 332 pN for that modified with MPTMS. The increase is most probably contributed by the nonspecific interactions between the apex of the modified AFM tip and the surface of the cells. The adhesion forces between the surface of NPs clusters grafted AFM tip and that of lung cells were dramatically reduced as NPs clusters were replaced by MPTMS. For the former, as the Au NPs cluster was applied, the adhesion force reached to 122 pN, whereas it significantly augmented with the addition of the cluster's size and dimension on the AFM tip. For the case of Ag cluster grafted on AFM tip, its adhesion force with the surface of the cells significantly lowered and reduced to 56 pN. Presumably, the electrostatic or van der Waals force between the two surfaces results in the variation of measurements. It is also very likely that the cell-surface interactions are probably varied by the nature of the contact surfaces, like the force-distance of attraction. The result is significant for understanding the the nature of the interactions between the surface of NPs and the membrane of lung cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.