Solid-state nuclear magnetic resonance (NMR) spectroscopy was applied to the membrane-bound form of a synthetic peptide representing the 23-residue N-terminal fusion peptide domain of the HIV-1 gp41 envelope glycoprotein. 1D solid-state NMR line width measurements of singly 13C carbonyl labeled peptides showed that a significant population of the membrane-bound peptide is well-structured in its N-terminal and central regions while the C-terminus has more disorder. There was some dependence of line width on lipid composition, with narrower line widths and hence greater structural order observed for a lipid composition comparable to that found in the virus and its target T cells. In the more ordered N-terminal and central regions of the peptide, the 13C carbonyl chemical shifts are consistent with a nonhelical membrane-bound conformation. Additional evidence for a beta strand membrane-bound conformation was provided by analysis of 2D rotor-synchronized magic angle spinning NMR spectra of doubly 13C carbonyl labeled peptides. Lipid mixing and aqueous contents leakage assays were applied to demonstrate the fusogenicity of the peptide under conditions comparable to those used for the solid-state NMR sample preparation.
Several studies have shown that gallic acid (GA) induces apoptosis in different cancer cell lines, whereas the mechanism of action of GA-induced apoptosis at the molecular level in human non-small-cell lung cancer NCI-H460 cells is not well-known. Here, GA decreasing the percentage of viable NCI-H460 cells was investigated; GA-induced apoptosis involved G2/M phase arrest and intracellular Ca(2+) production, the loss of mitochondrial membrane potential (DeltaPsi(m)), and caspase-3 activation. The efficacious induction of apoptosis and DNA damage was observed at 50-500 microM for 24 and/or 48 h as examined by flow cytometry, DAPI staining, and Comet assay methods. Western blotting and flow cytometric analysis also demonstrated that GA increased protein levels of GADD153 and GRP78, activation of caspase-8, -9, and -3, loss of DeltaPsi(m) and cytochrome c, and AIF release from mitochondria. Moreover, apoptosome formation and activation of caspase cascade were associated with apoptotic cell death. GA increased Bax and Bad protein levels and decreased Bcl-2 and Bcl-xL levels. GA may also induce apoptosis through a caspase-independent AIF pathway. In nude mice bearing NCI-H460 xenograft tumors, GA inhibited tumor growth in vivo. The data suggest that GA induced apoptosis in NCI-H460 lung cancer cells via a caspase-3 and mitochondrion-dependent pathway and inhibited the in vivo tumor growth of NCI-H460 cells in xenograft models.
The human immunodeficiency virus type 1 (HIV-1) fusion peptide serves as a useful model system for understanding viral/target cell fusion, at least to the lipid mixing stage. Previous solid-state NMR studies have shown that the peptide adopts an oligomeric beta-strand structure when associated with a lipid and cholesterol mixture close to that of membranes of host cells of the virus. In this study, this structure was further investigated using four different peptide constructs. In aqueous buffer solution, two of the constructs were primarily monomeric whereas the other two constructs had significant populations of oligomers/aggregates. NMR measurements for all membrane-associated peptide constructs were consistent with oligomeric beta-strand structure. Thus, constructs that are monomeric in solution can be converted to oligomers as a result of membrane association. In addition, samples prepared by very different methods had very similar NMR spectra, which indicates that the beta-strand structure is an equilibrium rather than a kinetically trapped structure. Lipid mixing assays were performed to assess the fusogenicities of the different constructs, and there was not a linear correlation between the solution oligomeric state and fusogenicity. However, the functional assays do suggest that small oligomers may be more fusogenic than either monomers or large aggregates.
The HIV-1 fusion peptide serves as a useful model system for understanding viral/target cell fusion, at least to the lipid-mixing stage. Previous solid-state NMR studies have shown that the membranebound HIV-1 fusion peptide adopts an extended conformation in a lipid mixture close to that of host cells of the virus. In the present study, solid-state NMR REDOR methods were applied for detection of oligomeric strand structure. The samples were prepared under fusogenic conditions and contained equimolar amounts of two peptides, one with selective [ 13 C]carbonyl labeling and the other with selective [ 15 N]amide labeling. In the REDOR measurements, observation of reduced 13 C intensity due to hydrogen-bonded amide 15 N provides strong experimental evidence of oligomer formation by the membrane-associated peptide.Comparison of REDOR spectra on samples that were labeled at different residue positions suggests that there are both parallel and antiparallel arrangements of peptide strands. In the parallel arrangement, interpeptide hydrogen bonding decreases toward the C-terminus, while in the antiparallel arrangement, hydrogen bonds are observed along the entire length of residues which was probed (Gly-5 to Gly-16). For the parallel arrangement, these observations are consistent with the model in which the apolar N-terminal and central regions of the peptides penetrate into the membrane and hydrogen bond with one another while the polar C-terminus of the peptide is outside the membrane and hydrogen bonds with water. These measurements show that, at least at the end state of fusion, the peptide can adopt an oligomeric strand structure.Fusion between the membranes of enveloped viruses such as HIV-1 1 and influenza and the membranes of their target host cells is an essential step in infection (1-4). For these viruses, this process is mediated by integral membrane viral envelope proteins which contain N-terminal ∼20-residue apolar fusion peptide domains. For HIV-1 and influenza, the free fusion peptide has also been shown to be a useful model to understand fusion, at least to the lipid-mixing stage. The free peptide causes fusion of liposomes and erythrocytes, and numerous mutational studies have shown strong correlations between fusion peptide-induced liposome fusion and viral/host cell fusion (5-20). Recent studies suggest that envelope protein regions other than the fusion peptide also interact with membranes and play a role in fusion (21-26).There is a crystal structure of the part of the influenza hemagglutinin envelope protein which lies outside the virus and which contains the fusion peptide (27). This "ectodomain" structure corresponds to a prefusogenic conformation. For both the hemagglutinin and the HIV-1 gp41 envelope proteins, there are also atomic resolution structures of the "soluble ectodomains" which do not contain the fusion peptide (28-34). These structures are believed to correspond to the protein conformations after fusion has occurred and perhaps during fusion as well. In each of these soluble...
HIV-1 and influenza viral fusion peptides are biologically relevant model fusion systems and, in this study, their membrane-associated structures were probed by solid-state NMR (13)C chemical shift measurements. The influenza peptide IFP-L2CF3N contained a (13)C carbonyl label at Leu-2 and a (15)N label at Phe-3 while the HIV-1 peptide HFP-UF8L9G10 was uniformly (13)C and (15)N labeled at Phe-8, Leu-9 and Gly-10. The membrane composition of the IFP-L2CF3N sample was POPC-POPG (4:1) and the membrane composition of the HFP-UF8L9G10 sample was a mixture of lipids and cholesterol which approximately reflects the lipid headgroup and cholesterol composition of host cells of the HIV-1 virus. In one-dimensional magic angle spinning spectra, labeled backbone (13)C were selectively observed using a REDOR filter of the (13)C-(15)N dipolar coupling. Backbone chemical shifts were very similar at -50 and 20 degrees C, which suggests that low temperature does not appreciably change the peptide structure. Relative to -50 degrees C, the 20 degrees C spectra had narrower signals with lower integrated intensity, which is consistent with greater motion at the higher temperature. The Leu-2 chemical shift in the IFP-L2CF3N sample correlates with a helical structure at this residue and is consistent with detection of helical structure by other biophysical techniques. Two-dimensional (13)C-(13)C correlation spectra were obtained for the HFP-UF8L9G10 sample and were used to assign the chemical shifts of all of the (13)C labels in the peptide. Secondary shift analysis was consistent with a beta-strand structure over these three residues. The high signal-to-noise ratio of the 2D spectra suggests that membrane-associated fusion peptides with longer sequences of labeled amino acids can also be assigned with 2D and 3D methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.