Objective-To determine the role of prostacyclin (PGI 2 ) in protecting endothelial cells (ECs) from apoptosis and elucidate the protective mechanism. Methods and Results-To evaluate the effect of PGI 2 on EC survival, we treated ECs with Ad-COX1/PGIS (Ad-COPI), which augmented selectively PGI 2 production or carbaprostacyclin (cPGI 2 ) followed by H 2 O 2 for 4 hours. Ad-COPI inhibited annexin V-positive cells and blocked caspase 3 activation. cPGI 2 inhibited apoptosis in a concentrationdependent manner. L-165041 had a similar effect, suggesting the involvement of peroxisome proliferator-activated receptor-␦ (PPAR␦). ECs expressed functional PPAR␦. PPAR␦ overexpression enhanced whereas PPAR␦ knockdown by small interfering RNA abrogated the antiapoptotic action of cPGI 2 and L-165041. Our results show for the first time that PGI 2 stimulated 14-
Objective-Brain expresses abundant lipocalin-type prostaglandin (PG) D 2 (PGD 2 ) synthase but the role of PGD 2 and its metabolite, 15-deoxy-⌬ 12,14 PGJ 2 (15d-PGJ 2 ) in brain protection is unclear. The aim of this study is to assess the effect of 15d-PGJ 2 on neuroprotection. Methods and Results-Adenoviral transfer of cyclooxygenase-1 (Adv-COX-1) was used to amplify the production of 15d-PGJ 2 in ischemic cortex in a rat focal infarction model. Cortical 15d-PGJ 2 in Adv-COX-1-treated rats was increased by 3-fold over control, which was correlated with reduced infarct volume and activated caspase 3, and increased peroxisome proliferator activated receptor-␥ (PPAR␥) and heme oxygenase-1 (HO-1). Intraventricular infusion of 15d-PGJ 2 resulted in reduction of infarct volume, which was abrogated by a PPAR␥ inhibitor. Rosiglitazone infusion had a similar effect. 15d-PGJ 2 and rosiglitazone at low concentrations suppressed H 2 O 2 -induced rat or human neuronal apoptosis and necrosis and induced PPAR␥ and HO-1 expression. The anti-apoptotic effect was abrogated by PPAR␥ inhibition. Key Words: COX-1 Ⅲ 15d-PGJ 2 Ⅲ PPAR␥ Ⅲ apoptosis Ⅲ stroke P rostaglandin (PG) H synthase-1 (also known as cyclooxygenase-1 [COX-1]) is constitutively expressed in almost all mammalian cells. 1 It is a bifunctional enzyme with a cyclooxygenase activity that converts arachidonic acid to PG G 2 (PGG 2 ) and a peroxidase activity that converts PGG 2 to PGH 2 . 2 PGH 2 is converted to diverse prostanoids by specific enzymes. COX-1 plays an important role in maintaining physiological homeostasis and protecting brain tissues from ischemia-reperfusion (I/R) injury. COX-1 deleted mice are highly susceptible to ischemic brain infarction, 3 whereas COX-1 overexpression protects brain from I/R damage, which is abrogated by a selective COX-1 inhibitor. 4 COX-1 overexpression in ischemic brain augments the production of PGI 2 , PGD 2 , and PGE 2 , and suppresses leukotriene B 4 (LTB 4 ) and LTC 4 . As LTB 4 and LTC 4 have been shown to be detrimental to brain tissue, whereas PGI 2 is protective, 5-7 COX-1 overexpression tilts the eicosanoid balance toward tissue protection. PGD 2 is elevated in COX-1 overexpressed brain tissues but its role in brain I/R injury is unclear. Brain is enriched in lipocalin-type PGD synthase (L-PGDS), which catalyzes the formation of abundant PGD 2 . 8 The role of PGD 2 in I/R brain injury is unclear. As 15-deoxy-⌬ 12,14 ; PGJ 2 (15d-PGJ 2 ), a nonenzymatic product of PGD 2 , was shown to possess anti-inflammatory properties through activation of peroxisome proliferator activated receptor-␥ (PPAR␥), 9 -13 PGD 2 has been implicated in tissue protection. However, it has recently been argued that the tissue 15d-PGJ 2 level is too low to elicit an anti-inflammatory action in vivo, especially in vascular tissues. 14 In view of abundant expression of L-PGDS and PGD 2 in brain, we postulated that 15d-PGJ 2 contributes to cerebral protection. Our experimental findings show a considerable amount of 15d-PGJ 2 in ischemia brain, which...
Background Thiazolidinediones (TZD) were reported to protect against ischemia-reperfusion (I/R) injury. Their protective actions are considered to be PPAR-γ (peroxisome proliferator-activated receptor γ)-dependent. However, it is unclear how PPAR-γ activation confers resistance to I/R. Methods and Results We evaluated the effects of rosiglitazone or PPAR-γ overexpression on cerebral infarction in a rat model and investigated the anti-apoptotic actions in N2-A neuroblastoma cell model. Rosiglitazone or PPAR-γ overexpression significantly reduced infarct volume. The protective effect was abrogated by PPAR-γ siRNA. In mice with knockin of a PPAR-γ domain negative mutant, infarct volume was enhanced. Proteomic analysis reveals that brain 14-3-3ε was highly upregulated in rats treated with rosiglitazone. 14-3-3ε upregulation was abrogated by PPAR-γ siRNA or antagonist. Promoter analysis and chromatin immunoprecipitation reveal that rosiglitazone induced PPAR-γ binding to specific regulatory elements on 14-3-3ε promoter and thereby increased 14-3-3ε transcription. 14-3-3ε siRNA abrogated the anti-apoptotic actions of rosiglitazone or PPAR-γ overexpression while 14-3-3ε recombinant proteins rescued brain tissues and N2-A cells from ischemia-induced damage and apoptosis. Elevated 14-3-3ε enhanced binding of phosphorylated Bad, and protected mitochondrial membrane potential. Conclusions Ligand-activated PPAR-γ confers resistance to neuronal apoptosis and cerebral infarction by driving 14-3-3ε transcription. 14-3-3ε upregulation enhances sequestration of phosphorylated Bad and thereby suppresses apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.