Fucosylation is a biological process that plays a critical role in multiple cellular functions from cell adhesion to immune regulation. Fucosyltransferases (FUTs) mediate fucosylation, and dysregulation of genes encoding FUTs is associated with various diseases. FUT1 and its fucosylated products are expressed in the ocular surface and ocular adnexa; however, the role of FUT1 in the ocular surface health and disease is yet unclear. Here, we investigated the effects of FUT1 on the ocular surface in steady-state conditions with age and under desiccating stress using a Fut1 knockout (KO) mouse model. We found that corneal epithelial defects and stromal opacity developed in Fut1 KO mice. Also, inflammatory responses in the ocular surface and Th1 cell activation in ocular draining lymph nodes (DLNs) were upregulated. Desiccating stress further aggravated Th1 cell-mediated immune responses in DLNs, lacrimal gland, and ocular surface in Fut1 KO mice, leading to severe corneal epithelial disruption and opacity. Mixed lymphocyte reaction assays revealed that the activity of splenocytes to stimulate CD4 T-cell proliferation was increased in Fut1 KO mice. Together, these data demonstrate that FUT1 deficiency induces immune dysregulation in the ocular surface and corneal opacity in steady state and under desiccating stress.
Purpose To investigate the effect of preserved corneal lamellar grafting on inflammation and wound healing and to compare its effect with that of preserved scleral grafting in a scleral defect rabbit model. Methods New Zealand White rabbits were assigned to a corneal lamellar grafting group ( n = 5) or a scleral grafting group ( n = 5). After lamellar dissection of superotemporal sclera using 6.0-mm trephine, the same sizes of preserved human corneal or scleral grafts were transplanted with 10-0 nylon interrupted sutures. The grafted areas were photodocumented at 3 to 21 days after surgery to evaluate epithelial wound healing index (%), neovascularization and presence of filaments. The existence of CD3 + T cells and CD34 + cells at the grafted areas was analyzed at 21 days. Results Epithelial wound healing index was significantly higher in the corneal grafting group at 9 days ( P < 0.05). Scleral grafts showed copious formation of filaments adherent to the engrafted area from 9 to 14 days, whereas the corneal grafts were free of filaments. The numbers of inflammatory cells were significantly higher in the scleral grafts ( P < 0.05), and CD3 + T cells and CD34 + cells were populated within inflammatory cells at graft–recipient junctions in both groups. The mean areas of the estimated perigraft and intragraft neovascularization tended to be higher in scleral grafts. Conclusions Preserved corneal lamellar grafting enhances epithelial wound healing and alleviates inflammation in a scleral defect rabbit model. Translational Relevance This work suggests that the preserved corneal graft may be considered as a favorable alternative option for repairing scleral defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.