The Cancer Genome Atlas (TCGA) data indicate that high MDM2 expression correlates with all subtypes of breast cancer. Overexpression of MDM2 drives breast oncogenesis in the presence of wild-type or mutant p53 (mtp53). Importantly, estrogen-receptor positive (ER+) breast cancers overexpress MDM2 and estrogen mediates this expression. We previously demonstrated that this estrogen-MDM2 axis activates the proliferation of breast cancer cell lines T47D (mtp53 L194F) and MCF7 (wild-type p53) in a manner independent of increased degradation of wild-type p53 (ie, p53-independently). Herein we present data supporting the role of the estrogen-MDM2 axis in regulating cell proliferation and mammary tissue architecture of MCF7 and T47D cells in a p53-independent manner. Inducible shRNA mediated MDM2 knockdown inhibited colony formation in soft agar, decreased mass size and induced lumen formation in matrigel and also significantly reduced mitosis as seen by decreased phospho-histone H3 positive cells. The knockdown of MDM2 in both cell lines decreased Rb phosphorylation and the level of E2F1 protein. This signaling was through the estrogen receptor because fulvestrant (a selective estrogen receptor degrader) decreased MDM2 protein levels and decreased phosphorylation of Rb. Taken together these data indicate that in some ER+ breast cancers the estrogen-MDM2-Rb-E2F1 axis is a central hub for estrogen-mediated p53-independent signal transduction. This is the first indication that estrogen signaling utilizes the estrogen-MDM2 axis to provoke phosphorylation of Rb and increase E2F1 while promoting abnormal mammary architecture.
Background Mouse double minute 2 (MDM2) is an E3 ubiquitin ligase that is over-expressed in many cancers and regulates target proteins through ubiquitination. Full-length MDM2 (MDM2-FL) is best known for targeting wild-type p53 for degradation by the proteasome, but the functions of the many splice variants of MDM2 are under-explored. The three well-studied alternative MDM2 isoforms are MDM2-A/ALT2, MDM2-B/ALT1, and MDM2-C/ALT3. MDM2-A and MDM2-B are capable of down-regulating MDM2-FL activity and have transforming activity in cancers with mutant p53. The MDM2 isoform MDM2-C is over-expressed in breast cancer and correlates with decreased survival in the context of mutant p53 expression. Therefore, MDM2-C requires further study to determine if it has biochemical activities similar to MDM2-FL. Hypothesis: We hypothesized that like MDM2-FL, the MDM2-C isoform (lacking exons 5–9 and containing a full C-terminal RING finger sequence) would maintain E3 ubiquitin ligase activity. Materials and Methods In order to explore the biochemical function of MDM2-C, we used an in vitro ubiquitination assay and a glutaraldehyde cross-linking assay. Results Here we report, for the first time, that MDM2-C has E3 auto-ubiquitin ligase activity, which can promote ubiquitination of wild-type p53 and mutant p53 R273H, and also can form a protein–protein interaction with p53 proteins. Conclusion This information strongly positions MDM2-C as a protein with biochemical activities that may explain the varied outcomes observed in patients with high-level expression of MDM2-C in the presence of wild-type p53 versus mutant p53.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.