Leakage magnetic flux (LMF) is widely used for non-contact detection of cracks. The combination of optics and LMF offers advantages such as real time inspection, elimination of electrical noise, high spatial resolution, etc. This paper describes a new nondestructive evaluation method based on an original magneto-optical inspection system, which uses a magneto -optical sensor, LMF, and an improved magnetization method. The improved magnetization method has the following characteristics: high observation sensitivity, independence of the crack orientation, and precise transcription of the geometry of a complex crack. The use of vertical magnetization enables the visualization of the length and width of a crack. The inspection system provides the images of the crack, and shows a possibility for the computation of its depth.
This paper presents the design, characterization, and analysis of a 10 nm silicon negative channel FinFET. To validate the design, we have simulated the output characteristics and transfer characteristics of the transistor. Both of which comply with the standard characteristics of an operational MOSFET. Owing to its efficacy in suppressing short channel effects, the leakage current of the tri-gate transistor is found to be low; whereas, the drive current is sufficiently high. We have also presented the design specifications of the transistor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.