Fluvial sediment export from small mountainous rivers in Oceania has global biogeochemical significance affecting the turnover rate and export of terrestrial carbon, which might be speeding up at the recognized conditions of increased rainfall intensity. In this study, the historical runoff and sediment export from 16 major rivers in Taiwan are investigated and separated into an early stage (1970–1989) and a recent stage (1990–2010) to illustrate the changes of both runoff and sediment export. The mean daily sediment export from Taiwan Island in the recent stage significantly increased by >80% with subtle increase in daily runoff, indicating more sediment being delivered to the ocean per unit of runoff in the recent stage. The medians of the runoff depth and sediment yield extremes (99.0–99.9 percentiles) among the 16 rivers increased by 6.5%-37% and 62%-94%, respectively, reflecting the disproportionately magnified response of sediment export to the increased runoff. Taiwan is facing increasing event rainfall intensity which has resulted in chain reactions on magnified runoff and sediment export responses. As the globe is warming, rainfall extremes, which are proved to be temperature-dependent, very likely intensify runoff and trigger more sediment associated hazards. Such impacts might occur globally because significant increases of high-intensity precipitation have been observed not only in Taiwan but over most land areas of the globe.
Demonstrated novel synthesis of two dimensional MoO3 nanoflakes decorated by C-dots. Unique optoelectronic properties revealed at longer wavelength (850 nm).
Little is known about differences in species diversity among ecological communities subject to different levels of human-caused habitat transformation and how this disturbance contributes to diversity through symbiotic dependencies with the environment in freshwater ecosystems. We estimated α and β diversities
of benthic macroinvertebrates and relationships between diversity and environmental variables in Ado River (natural) and Yasu River (intermediately disturbed) watersheds, Japan. Alpha diversity was consistently slightly higher in the natural river watershed than in the intermediately disturbed one, but the spatial distribution was not equivalent. The opposite pattern was found for β diversity. Significant differences in environmental variables existed between the two river watersheds, with especially high chlorophyll-a concentrations detected in the intermediately disturbed watershed. Alpha diversity was not correlated with specific environmental variables, whereas water temperature and chlorophyll-a concentrations were the two most significant environmental variables influencing β diversity across sites in the two watersheds. These results suggest that diversity patterns in freshwater benthic macroinvertebrates are differentially influenced by levels of human-caused habitat transformation, especially that intermediately disturbed habitats may benefit species turnover, and further understanding how they relate to environmental variables is essential for protecting local to regional diversity and can provide useful information for conservation planning to maximise biodiversity at the watershed scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.