Wnt signaling maintains diverse adult stem cell compartments and is implicated in chemotherapy resistance in cancer. PORCN inhibitors that block Wnt secretion have proven effective in Wnt‐addicted preclinical cancer models and are in clinical trials. In a survey for potential combination therapies, we found that Wnt inhibition synergizes with the PARP inhibitor olaparib in Wnt‐addicted cancers. Mechanistically, we find that multiple genes in the homologous recombination and Fanconi anemia repair pathways, including BRCA1, FANCD2, and RAD51, are dependent on Wnt/β‐catenin signaling in Wnt‐high cancers, and treatment with a PORCN inhibitor creates a BRCA‐like state. This coherent regulation of DNA repair genes occurs in part via a Wnt/β‐catenin/MYBL2 axis. Importantly, this pathway also functions in intestinal crypts, where high expression of BRCA and Fanconi anemia genes is seen in intestinal stem cells, with further upregulation in Wnt‐high APCmin mutant polyps. Our findings suggest a general paradigm that Wnt/β‐catenin signaling enhances DNA repair in stem cells and cancers to maintain genomic integrity. Conversely, interventions that block Wnt signaling may sensitize cancers to radiation and other DNA damaging agents.
Aberrant Wnt signaling drives a number of cancers through regulation of diverse downstream pathways. Wnt/β-catenin signaling achieves this in part by increasing the expression of proto-oncogenes such as MYC and cyclins. However, global assessment of the Wnt-regulated transcriptome in vivo in genetically distinct cancers demonstrates that Wnt signaling suppresses the expression of as many genes as it activates. In this study, we examined the set of genes that are upregulated upon inhibition of Wnt signaling in Wnt-addicted pancreatic and colorectal cancer models. Decreasing Wnt signaling led to a marked increase in gene expression by activating ERK and JNK; these changes in gene expression could be mitigated in part by concurrent inhibition of MEK. These findings demonstrate that increased Wnt signaling in cancer represses MAPK activity, preventing RAS-mediated senescence while allowing cancer cells to proliferate. These results shift the paradigm from Wnt/β-catenin primarily as an activator of transcription to a more nuanced view where Wnt/β-catenin signaling drives both widespread gene repression and activation. Significance: These findings show that Wnt/β-catenin signaling causes widespread gene repression via inhibition of MAPK signaling, thus fine tuning the RAS-MAPK pathway to optimize proliferation in cancer.
Wnt signaling maintains diverse adult stem cell compartments and is implicated in chemotherapy resistance in cancer. PORCN inhibitors that block Wnt secretion have 30 proven effective in Wnt-addicted preclinical cancer models and are in clinical trials. In a survey for potential combination therapies, we found that Wnt inhibition synergizes with the PARP inhibitor olaparib in Wnt-addicted cancers. Mechanistically, we find that multiple genes in the homologous recombination and Fanconi anemia repair pathways, including BRCA1, FANCD2, and RAD51 are dependent on Wnt/β-catenin signaling in Wnt-high cancers, and treatment with a PORCN inhibitor creates a BRCA-like state. This coherent regulation of DNA repair genes occurs via a Wnt/β-catenin/MYBL2 axis. Importantly, this pathway also functions in intestinal crypts, where high expression of BRCA and Fanconi anemia genes is seen in intestinal stem cells, with further upregulation in Wnt high APC min mutant polyps. Our findings suggest a general paradigm that Wnt/β-40 catenin signaling enhances DNA repair in stem cells and cancers to maintain genomic integrity. Conversely, interventions that block Wnt signaling may sensitize cancers to radiation and other DNA damaging agents. 610
<p>Supplementary Table 1</p>
<p>Supplementary Table 1</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.