People of African ancestry carrying certain APOL1 mutant alleles are at elevated risk of developing renal diseases. However, the mechanisms underlying APOL1-associated renal diseases are unknown. Because the APOL1 gene is unique to humans and some primates, new animal models are needed to understand the function of APOL1 in vivo. We generated transgenic Drosophila fly lines expressing the human APOL1 wild type allele (G0) or the predominant APOL1 risk allele (G1) in different tissues. Ubiquitous expression of APOL1 G0 or G1 in Drosophila induced lethal phenotypes, and G1 was more toxic than was G0. Selective expression of the APOL1 G0 or G1 transgene in nephrocytes, fly cells homologous to mammalian podocytes, induced increased endocytic activity and accumulation of hemolymph proteins, dextran particles, and silver nitrate. As transgenic flies with either allele aged, nephrocyte function declined, cell size increased, and nephrocytes died prematurely. Compared with G0-expressing cells, however, G1-expressing cells showed more dramatic phenotypes, resembling those observed in cultured mammalian podocytes overexpressing APOL1-G1. Expressing the G0 or G1 APOL1 transgene in nephrocytes also impaired the acidification of organelles. We conclude that expression of an APOL1 transgene initially enhances nephrocyte function, causing hypertrophy and subsequent cell death. This new Drosophila model uncovers a novel mechanism by which upregulated expression of APOL1-G1 could precipitate renal disease in humans. Furthermore, this model may facilitate the identification of APOL1-interacting molecules that could serve as new drug targets to treat APOL1-associated renal diseases.
CD44 is a glycosylated adhesion molecule and osteopontin is one of its ligand. CD44 undergoes alternative splicing to produce variant isoforms. Our recent studies have shown an increase in the surface expression of CD44 isoforms (sCD44 and v4-v10 variant CD44) in prostate cancer cells over-expressing osteopontin (PC3/OPN). Formation of CD44/MMP9 complex on the cell surface is indispensable for MMP9 activity. In this study, we have characterized the expression of variant CD44 using RT-PCR, surface labeling with NHS-biotin, and immunoblotting. Expression of variant CD44 encompassing v4-v10 and sCD44 at mRNA and protein levels are of the same levels in PC3 and PC3/OPN cells. However, an increase in the surface expression of v6, v10, and sCD44 in PC3/OPN cells suggest that OPN may be a ligand for these isoforms. We then proceeded to determine the role of sCD44 in MMP9 activation. Based on our previous studies in osteoclasts, we hypothesized that phosphorylation of CD44 has a role on its surface expression and subsequent activation of MMP9. We have prepared TAT-fused CD44 peptides comprising unphosphorylated and constitutively phosphorylated serine residues at positions Ser323 and Ser325. Transduction of phosphopeptides at Ser323 and Ser323/325 into PC3 cells reduced the surface levels of CD44, MMP9 activity, and cell migration; but had no effect on the membrane localization of MMP9. However, MMP9 knock-down PC3 cells showed reduced CD44 at cellular and surface levels. Thus we conclude that surface expression of CD44 and activation of MMP9 on the cell surface are interdependent.
Mortalin is an essential component of the molecular machinery that imports nuclear-encoded proteins into mitochondria, assists in their folding, and protects against damage upon accumulation of dysfunctional, unfolded proteins in aging mitochondria. Mortalin dysfunction associated with Parkinson’s disease (PD) increases the vulnerability of cultured cells to proteolytic stress and leads to changes in mitochondrial function and morphology. To date, Drosophila melanogaster has been successfully used to investigate pathogenesis following the loss of several other PD-associated genes. We generated the first loss-of-Hsc70-5/mortalin-function Drosophila model. The reduction of Mortalin expression recapitulates some of the defects observed in the existing Drosophila PD-models, which include reduced ATP levels, abnormal wing posture, shortened life span, and reduced spontaneous locomotor and climbing ability. Dopaminergic neurons seem to be more sensitive to the loss of mortalin than other neuronal sub-types and non-neuronal tissues. The loss of synaptic mitochondria is an early pathological change that might cause later degenerative events. It precedes both behavioral abnormalities and structural changes at the neuromuscular junction (NMJ) of mortalin-knockdown larvae that exhibit increased mitochondrial fragmentation. Autophagy is concomitantly up-regulated, suggesting that mitochondria are degraded via mitophagy. Ex vivo data from human fibroblasts identifies increased mitophagy as an early pathological change that precedes apoptosis. Given the specificity of the observed defects, we are confident that the loss-of-mortalin model presented in this study will be useful for further dissection of the complex network of pathways that underlie the development of mitochondrial parkinsonism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.