The automotive industry is experiencing a period of innovation, represented by the term CASE (connected, autonomous, shared, and electric). Among the innovative new technologies for automobiles, intelligent tire (iTire) collects road surface information through sensors installed inside a tire and informs the driver of the road conditions. iTire can promote safe driving. Various kinds of research on iTire is ongoing, and this paper proposes an algorithm to determine the road surface conditions while driving. Specifically, we have proposed a method for extracting the feature points of a frequency band, by converting acceleration data collected by sensors through fast Fourier transform (FFT) and determining road surface conditions via an artificial neural network. Lastly, the applicability of the algorithm was verified.
The accurate detection of tire tread wear plays an important role in preventing tire-related accidents. In previous studies, tire wear detection is performed by interpreting mathematical models and tire characteristics. However, this approach may not accurately reflect the real driving environment. In this study, we propose a tire tread wear detection system that utilizes machine learning to provide accurate results under real-road driving conditions. The proposed system comprises (1) an intelligent tire that samples the measured acceleration signals and processes them in a dataset, (2) a preprocessing component that extracts features from the collected data according to the degree of wear, and (3) a detection component that uses a deep neural network to classify the degree of wear. To implement the proposed system in a vehicle, we designed an acceleration-based intelligent tire that can transmit data over wireless networks. At speeds between 30 and 80 km/h, the proposed system was experimentally demonstrated to achieve an accuracy of 95.51% for detecting tire tread wear under real-road driving conditions. Moreover, this system uses only preprocessed acceleration signals and machine-learning algorithms, without requiring complex physical models and numerical analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.