Hypothermic preservation is known to cause renal graft injury, especially in donation after circulatory death (DCD) kidney transplantation. We investigated the impact of cold storage (SCS) versus short periods of normothermic ex vivo kidney perfusion (NEVKP) after SCS versus prolonged, continuous NEVKP with near avoidance of SCS on kidney function after transplantation. Following 30 min of warm ischemia, kidneys were removed from 30-kg Yorkshire pigs and preserved for 16 h with (A) 16 h SCS, (B) 15 h SCS + 1 h NEVKP, (C) 8 h SCS + 8 h NEVKP, and (D) 16 h NEVKP. After contralateral kidney resection, grafts were autotransplanted and pigs followed up for 8 days. Perfusate injury markers such as aspartate aminotransferase and lactate dehydrogenase remained low; lactate decreased significantly until end of perfusion in groups C and D (p < 0.001 and p = 0.002). Grafts in group D demonstrated significantly lower serum creatinine peak when compared to all other groups (p < 0.001) and 24-h creatinine clearance at day 3 after surgery was significantly higher (63.4 ± 19.0 mL/min) versus all other groups (p < 0.001). Histological assessment on day 8 demonstrated fewer apoptotic cells in group D (p = 0.008). In conclusion, prolonged, continuous NEVKP provides superior short-term outcomes following DCD kidney transplantation versus SCS or short additional NEVKP following SCS.
Normothermic ex vivo kidney perfusion (NEVKP) represents a novel approach for graft preservation and functional improvement in kidney transplantation. We investigated whether NEVKP also allows graft quality assessment before transplantation. Kidneys from 30-kg pigs were recovered in a model of heart-beating donation (group A) after 30 minutes (group B) or 60 minutes (group C) (n = 5/group) of warm ischemia. After 8 hours of NEVKP, contralateral kidneys were resected, grafts were autotransplanted, and the pigs were followed for 3 days. After transplantation, renal function measured based on peak serum creatinine differed significantly among groups (P < .05). Throughout NEVKP, intrarenal resistance was lowest in group A and highest in group C (P < .05). intrarenal resistance at the initiation of NEVKP correlated with postoperative renal function (P < .001 at NEVKP hour 1). Markers of acid-base homeostasis (pH, HCO , base excess) differed among groups (P < .05) and correlated with posttransplantation renal function (P < .001 for pH at NEVKP hour 1). Similarly, lactate and aspartate aminotransferase were lowest in noninjured grafts versus donation after circulatory death kidneys (P < .05) and correlated with posttransplantation kidney function (P < .001 for lactate at NEVKP hour 1). In conclusion, assessment of perfusion characteristics and clinically available perfusate biomarkers during NEVKP allows the prediction of posttransplantation graft function. Thus, NEVKP might allow decision-making regarding whether grafts are suitable for transplantation.
Normothermic ex vivo kidney perfusion (NEVKP) demonstrated superior results compared to hypothermic storage in donation after circulatory death (DCD) kidney transplantation. It is unknown whether an optimal perfusion time exists following hypothermic storage to allow for the recovery of renal grafts from cold ischemic injury. In a porcine model of DCD kidney autotransplantation, the impact of initial static cold storage (SCS) (8 h) followed by various periods of NEVKP recovery was investigated: group A, 8 hSCS only (control); group B, 8 hSCS + 1 hNEVKP (brief NEVKP); group C, 8 hSCS + 8 hNEVKP (intermediate NEVKP); and group D, 8 hSCS + 16 hNEVKP (prolonged NEVKP). All grafts were preserved and transplanted successfully. One animal in group D was sacrificed and excluded by postoperative day 3 due to hind limb paralysis, but demonstrated good renal function. Postoperative graft assessment during 8 days’ follow‐up demonstrated lowest levels of peak serum creatinine for intermediate (C) and prolonged (D) NEVKP (p = 0.027). Histological assessment on day 8 demonstrated a significant difference in tubular injury (p = 0.001), with highest values for group B. These results suggest that longer periods of NEVKP following SCS are feasible and safe for postponing surgical transplant procedure and superior to brief NEVKP, reducing the damage caused during cold ischemic storage of renal grafts.
In this porcine model of donation after circulatory death kidney transplantation NEVKP reduced kidney injury and improved graft function when compared with no-preservation. The results suggest that NEVKP does not cause additional damage to grafts during the preservation period, but may reverse the negative effects of warm ischemic insult itself and promotes regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.