Objective We have identified a gene YOD1 encoding deubiquitinating enzyme (DUB) responsible for nonsyndromic cleft lip with or without cleft palate (NSCL/P). We aimed to determine the effects of YOD1 RNA interference (RNAi) on cell proliferation and migration, playing an important role in lip and palate formation, and to clarify whether the mechanisms involved TGF-β3 signaling associated with NSCL/P. Methods RNAi was applied to construct vectors expressing YOD1 small interference RNAs (siRNAs). The vectors were transfected into the human oral keratinocytes (HOK) cells. The cell proliferation and migration were evaluated by the cell counting kit-8 (CCK-8) assay and wound healing assay, respectively. The mRNA levels were detected by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). The protein levels were investigated by western blotting. Results The proliferation of YOD1 siRNA-transfected HOK cells was remarkably inhibited. The migration rate was significantly decreased in the YOD1 siRNA-transfected HOK cells. The TGF-β3 mRNA and protein levels were decreased significantly by siRNA-mediated knockdown of YOD1. YOD1 RNAi reduced the phosphor-Smad2/3 levels significantly. Conclusions YOD1 RNAi may inhibit cell proliferation and migration associated with the pathogenesis of NSCL/P through TGF-β3 signaling. The study indicates a novel role of YOD1 in regulating TGF-β3 signaling to affect cell proliferation and migration resulting in NSCL/P.
Cypermethrin, an extensively used pyrethroid pesticide, is regarded as one of many endocrine-disrupting chemicals (EDCs) with anti-androgenic activity to damage male reproductive systems. We previously found cypermethrin-induced apoptosis in mouse Sertoli cells TM4. We hypothesized cypermethrin-induced TM4 apoptosis by the endoplasmic reticulum (ER) pathway. This study aimed to explore the roles of the ER pathway in cypermethrin-induced apoptosis in TM4 cells. The cells were treated with cypermethrin for 24 h at various concentrations (0 µM, 10 µM, 20 µM, 40 µM, and 80 µM). Flow cytometry was used to test for apoptosis. Western blot was used to test protein expressions in the ER stress pathway. The results showed that the apoptosis rate of TM4 cells increased with increased concentrations of cypermethrin, and a significant difference was detected in the 80-μM group. The protein expressions of glucose-regulated protein 78 (GRP78), protein kinase R (PKR)-like ER kinase (PERK), p-PERK, α subunit of eukaryotic initiation factor (eIF2α), p-eIF2α, activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), caspase-12, caspase-9, and caspase-3 increased with increased concentrations of cypermethrin . The results suggested cypermethrin-induced apoptosis in TM4 cells regulated by the ER pathway involving PERK-eIF2α-ATF4-CHOP. The study provides a new insight into cypermethrin-induced apoptosis in Sertoli cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.