, "Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source" (2013). Donald Umstadter Publications. 92.
Purposes The main aim of the study was to investigate the dosimetric difference between acuros XB algorithm (AXB), anisotropic analytic algorithm (AAA), and pencil beam convolution (PBC) algorithm in stereotactic body radiation therapy (SBRT) plan for non-small cell lung cancer (NSCLC). Patients and Methods Thirty-eight NSCLC patients were included. GTV, PTV, and organs at risk were delineated by the radiation oncologists. Three optimized SBRT plans for each patients were gained using three algorithms of AXB, AAA, and PBC with the identical plan parameters. Dosimetric endpoints were collected and compared among the three plans, including dosimetric criteria: V100%, V90%, PTV D min , D max , D mean , homogeneity index (HI), and Paddick conformity index (CI). Results AXB plan resulted in decreased V100% with a mean difference 6.14% compared with PBC plan (For V100%, AXB vs AAA vs PBC=93.44% vs 95.54% vs 99.58%, P <0.05). Three plans showed no significant difference as to the parameter V90%. AXB plan leaded to reduced D min of PTV compared with other two algorithms (For D min of PTV, AXB vs AAA vs PBC=4048cGy vs 4365Gy vs 4873Gy, P <0.05). PBC induced the enhanced trend of D max of PTV compared with other two algorithms (D max among three algorithms, P> 0.05); and increased the D mean of PTV in three algorithms with significant difference (For D mean of PTV, AXB vs AAA vs PBC=5332cGy vs 5330Gy vs 5785Gy, P <0.05). AXB algorithm achieved a similar plan conformity with other two algorithms (For CI, AXB vs AAA vs PBC=0.80 vs 0.85 vs 0.71, P >0.05). Conclusion For SBRT plan of NSCLC, AAA and PBC algorithms overestimate target coverage, AXB algorithm is recommended for the SBRT plan of NSCLC.
Using the Lorentz force law, we derived simpler expressions for the total longitudinal (conserved) momentum and the mechanical momentums associated with an optical pulse propagating along a dispersive optical waveguide. These expressions can be applied to an arbitrary non-absorptive optical waveguide having continuous translational symmetry. Our simulation using finite difference time domain (FDTD) method verified that the total momentum formula is valid in a two-dimensional infinite waveguide. We studied the conservation of the total momentum and the transfer of the momentum to the waveguide for the case when an optical pulse travels from a finite waveguide to vacuum. We found that neither the Abraham nor the Minkowski momentum expression for an electromagnetic wave in a waveguide represents the complete total (conserved) momentum. Only the total momentum as we derived for a mode propagating in a dispersive optical waveguides is the 'true' conserved momentum. This total momentum can be expressed as PTot = -U Die/(vg) + neff (U/c). It has three contributions: (1) the Abraham momentum; (2) the momentum from the Abraham force, which equals to the difference between the Abraham momentum and the Minkowski momentum; and (3) the momentum from the dipole force which can be expressed as -UDie/vg. The last two contributions constitute the mechanical momentum. Compared with FDTD-Lorentz-force method, the presently derived total momentum formula provides a better method in terms of analyzing the permanent transfer of optical momentum to a waveguide.
The precision and efficiency of the registration of megavolt-level electronic portal imaging devices (EPID) images with the naked eye in the orthogonal window are reduced. This study aims to develop a new registration algorithm with enhanced accuracy and efficiency. Ten setup errors with different translation and rotation were simulated with the phantom. For each error, one set of simulated computer tomography images and EPID images were acquired and registered with the traditional and the new method. The traditional method was performed by two senior physicists with the Varian Offline Review software. The new method is basing on the comparison of the precise contours of the same bone structure in the digital reconstruction radiography images and the EPID images, and the contours were fitted with an automatic edge detection algorithm based on gradient images. The average error of the new method was decreased by 44.44%, 28.33%, 49.09% in the translation of X, Y, and Z axes (The traditional vs. the new: X axes, 0.45 mm vs. 0.25 mm; Y axes, 0.75 mm vs. 0.35 mm; Z axes, 0.55 mm vs. 0.28 mm), 42.86% and 40.48% in the rotation of X and Z axes (The traditional vs. the new: X axes, 0.49° vs. 0.28°; Z axes, 0.42° vs. 0.25°), respectively. The average elapsed time in the new method was reduced by 11.14% (The traditional vs. the new: 44 s vs. 39.1 s). The new registration method has significant advantages of accuracy and efficiency compared with the traditional method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.