Platinum-based alloys have been extensively shown to be effective catalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). Most of these catalysts are nanoparticles without shape control. Recently, extended Pt(3)Ni(111) surfaces prepared in ultrahigh vacuum were demonstrated to possess enhanced ORR catalytic activity as compared to the state-of-the-art carbon supported Pt (Pt/C) nanoparticle catalysts. How and whether this promising surface can be transformed into practical nanoscale electrocatalysts used in PEMFCs remain a challenge. We report a new wet-chemical approach of preparing monodisperse Pt(3)Ni nanoctahedra and nanocubes terminated with {111} and {100} facets, respectively. We further show that the ORR activity on the Pt(3)Ni nanoctahedra is approximately 5-fold higher than that of nanocubes with a similar size. Comparison of ORR activity between carbon-supported Pt(3)Ni nanoctahedra and commercial Pt/C reveals that the Pt(3)Ni nanoctahedra are highly active electrocatalysts. This synthetic strategy may be extended to the preparation of other shape-controlled fuel cell electrocatalysts.
A facile, reliable, general, and robust synthetic method for preparation of high-quality, (100)-terminated Pt(3)M nanocubes (M = Pt or 3d-transition metals Co, Fe, and Ni) has been developed. It was identified that addition of W(CO)(6) is crucial for control of the nucleation process when the metallic precursors are reduced, whereas an optimized ratio of the solvent pair, oleylamine and oleic acid, is the key to enabling the lowest total surface energy on {100} facets in order to develop cubic nanocrystals in the present system. The resultant monodisperse nanocubes, in which Pt is partially substituted, are expected to exhibit unusual electrocatalytic characteristics, providing an alternative for developing high-performance electrocatalysts for use in fuel cells.
Shape-controlled catalysis: High-quality Pt-Cu nanocubes with an average size of about 8 nm (see picture, scale bar = 20 nm) were synthesized from a high-temperature organic solution system in the presence of various capping ligands. These cubic Pt-Cu nanocrystals terminated with {100} facets demonstrated a superior catalytic activity towards methanol oxidation compared to similar sized Pt-Cu and Pt nanospheres.
Loaded dice: High‐quality and similarly sized Pt3Co and Pt nanocubes were prepared by gradually reducing metal precursors at high temperatures. Cyclic voltammetric and chronoamperometric results show a much higher methanol oxidation current density on Pt3Co nanocubes (see picture). The enhanced catalytic activity was explained by the slower and weaker adsorption of CO onto Pt3Co.
ZnTe nanorods with controllable aspect ratios were synthesized using polytellurides a tellurium precursor. The use of polytellurides which allow nucleation and growth at relatively low temperature is the key to formation of wurtzite phase and controlled anisotropic growth along c-axis. The aspect ratio of the resulting ZnTe nanorods was controlled by tuning the temperature that in turn controls the kinetics of the nanocrystal growth. A diameter dependent quantum confinement effect in ZnTe nanorods was observed by UV-vis absorption spectroscopy. Transient absorption measurements show ultrafast charge injection dynamics from ZnTe nanorods, suggesting their strong potential for applications in photocatalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.