Most of the information obtained by humans comes from colour images. However, saltand-pepper noise (SPN) during signal acquisition, encoding, transmission, and decoding easily interferes with the quality of colour images. Most existing SPN denoising methods decompose a colour image into three independent matrices according to the colour channel and then recover each channel signal independently, ignoring the strong data correlation between channels. In addition, most existing SPN denoising methods apply only a single model-driven or data-driven approach and fail to take the advantages of their combination fully. Therefore, we first regard a colour image contaminated by SPN as the sum of an SPN tensor and a tensor with missing data. In this manner, we transform the denoising problem into a low-rank tensor reconstruction problem. We then introduce a model-driven-based parallel matrix factorization low-rank tensor reconstruction algorithm and a data-driven-based FFDNet denoising network to restore the colour image better. The proposed method not only enhances the similarity of the colour image channels but also explores the deep prior of the colour image to capture the image details. Finally, the proposed method is compared with some advanced denoising methods. The results show that the proposed method achieves a competitive denoising performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.