a b s t r a c tWe study nonlinear regression models whose both response and predictors are measured with errors and distorted as single-index models of some observable confounding variables, and propose a multicovariate-adjusted procedure. We first examine the relationship between the observed primary variables (observed response and observed predictors) and the confounding variables by appropriately estimating the single index. We then develop a semiparametric profile nonlinear least square estimation procedure for the parameters of interest after we calibrate the error-prone response and predictors. Asymptotic properties of the proposed estimators are established. To avoid estimating the asymptotic covariance matrix that contains the infinite-dimensional nuisance distorting functions and the single index, and to improve the accuracy of the proposed estimation, we also propose an empirical likelihood-based statistic, which is shown to be asymptotically chi-squared. A simulation study is conducted to evaluate the performance of the proposed methods and a real dataset is analyzed as an illustration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.