The efficacy of immune checkpoint inhibition in inducing death of cancer cells is affected by the immunosuppressive “cold” tumor microenvironment, which results in a poor response by the patient's antitumor immune system. However, the immunomodulatory effects of immunogenic cell death in response to irritation by heat energy and reactive oxygen species (ROS) can switch the tumor microenvironment from “cold” to “hot.” This study has developed a nanoadjuvant for immune therapy using iron tungsten oxide (FeWOx)‐based nanosheets with surface PEGylation (FeWOx‐PEG). This FeWOx‐PEG nanoadjuvant serves as a chemodynamic reagent via the Fenton reaction and acts as a photosensitizer for photodynamic and photothermal therapy under near‐infrared II laser irradiation; however, it could also be used to augment tumor‐infiltrating T‐cells and provoke a systemic antitumor immune response by combining the immunogenic cell death triggered by ROS and photothermal therapy with the immune checkpoint blockade. This research demonstrates that application of the FeWOx‐PEG nanoadjuvant under the guidance of magnetic resonance/computed tomography/photoacoustic imaging can eliminate the primary tumor and suppress the growth of distant tumors.
Bacterial persisters are a sub-population of phenotypic variants that tolerate high concentrations of antibiotics within the genetically homogeneous cells. They resume division upon the removal of drugs. Bacterial persistence is one of major causes of antibiotic treatment failure and recurrent infection. Cell dormancy, triggered by toxin/antitoxin pair, (p)ppGpp, SOS response and ATP levels, is known to be the mechanistic basis for persistence. However, recent studies have demonstrated that bacteria with active metabolism can maintain persistence by lowering intracellular antibiotic concentration via an efflux pump. Additionally, others and our work have showed that cell wall deficient bacteria (CWDB), including both L-form and spheroplasts that produced by β-lactam antibiotics, are associated with antibiotic persistence. They are not dormant cells as their cell walls have been completely damaged. In this review, we discuss the various types of persisters and highlight the contribution of non-walled bacteria on bacterial persistence.
Background: Some patients with cervical cancer have the need to preserve fertility; therefore, a minimally invasive treatment option that can effectively inactivate tumors in these patients is necessary. Methods: In this paper, we designed and prepared nanoparticles (NPs) carrying IR780 and perfluorohexane (PFH) and characterized their properties. We focused on the promotion of programmed low-intensity focused ultrasound (LIFU) irradiation on the penetration and treatment of cervical cancer. First we used penetration-enhancing LIFU irradiation to promote the penetration of the NPs into 3D multicellular tumor spheroids (MCTSs) and tumors in tumor-bearing nude mice. Then we used re-therapeutic LIFU irradiation to achieve antitumor effects in vitro and in vivo. Photoacoustic (PA) and magnetic resonance (MR) imaging were used to monitor and evaluate the targeting and therapeutic effects of these NPs on tumor tissues. Results:The NPs prepared in this paper exhibited high affinity for HeLa cells, and can selectively achieve mitochondrial localization in the cell due to IR780 assistance. The penetration-enhancing LIFU irradiation have the ability to promote the penetration of the NPs into cervical cancer models in vivo and in vitro. Under LIFU irradiation, the cytotoxic reactive oxygen species (ROS) produced by IR780 during the first half of the re-therapeutic LIFU irradiation and the physical acoustic droplet vaporization (ADV) effect after PFH phase transition during the second half of the re-therapeutic LIFU irradiation can achieve synergistic minimally invasive treatment of tumors, which can be visualized and evaluated by PA and MR imaging in vivo. Conclusion:Well-programmed LIFU irradiation can promote NP penetration into deep tumor tissue and achieve antitumor effects simultaneously. Linking ROS + ADV effects can induce cell coagulation necrosis and lead to a comprehensive, long-term impact on tumor tissue, providing a conceptual theranostic nanoplatform for cervical cancer.
Background Although programmed cell death protein 1 (PD-1)/ programmed cell death-ligand protein 1 (PD-L1) checkpoint blockade immunotherapy demonstrates great promise in cancer treatment, poor infiltration of T cells resulted from tumor immunosuppressive microenvironment (TIME) and insufficient accumulation of anti-PD-L1 (αPD-L1) in tumor sites diminish the immune response. Herein, we reported a drug-loaded microbubble delivery system to overcome these obstacles and enhance PD-L1 blockade immunotherapy. Methods Docetaxel (DTX) and imiquimod (R837)-loaded microbubbles (RD@MBs) were synthesized via a typical rotary evaporation method combined with mechanical oscillation. The targeted release of drugs was achieved by using the directional "bursting" capability of ultrasound-targeted microbubble destruction (UTMD) technology. The antitumor immune response by RD@MBs combining αPD-L1 were evaluated on 4T1 and CT26 tumor models. Results The dying tumor cells induced by DTX release tumor-associated antigens (TAAs), together with R837, promoted the activation, proliferation and recruitment of T cells. Besides, UTMD technology and DTX enhanced the accumulation of αPD-L1 in tumor sites. Moreover, RD@MBs remolded TIME, including the polarization of M2-phenotype tumor-associated macrophages (TAMs) to M1-phenotype, and reduction of myeloid-derived suppressor cells (MDSCs). The RD@MBs + αPD-L1 synergistic therapy not only effectively inhibited the growth of primary tumors, but also significantly inhibited the mimic distant tumors as well as lung metastases. Conclusion PD-L1 blockade immunotherapy was enhanced by RD@MBs delivery system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.