In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/
TNS3
,
P
= 4.35 × 10
−8
). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PANDoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (
NOC2L
,
P
= 8.36 × 10
−14
), rs2941471 at 8q21.11 (
HNF4G
,
P
= 6.60 × 10
−10
), rs4795218 at 17q12 (
HNF1B
,
P
= 1.32 × 10
−8
), and rs1517037 at 18q21.32 (
GRP
,
P
= 3.28 × 10
−8
). rs78417682 is not statistically significantly associated with pancreatic cancer in PANDoRA. Expression quantitative trait locus analysis in three independent pancreatic data sets provides molecular support of
NOC2L
as a pancreatic cancer susceptibility gene.
Tuberculosis (TB) remains one of the most common infectious diseases caused by Mycobacterium tuberculosis complex (MTBC). To panoramically analyze MTBC's genomic methylation, we completed the genomes of 12 MTBC strains (Mycobacterium bovis; M. bovis BCG; M. microti; M. africanum; M. tuberculosis H37Rv; H37Ra; and 6 M. tuberculosis clinical isolates) belonging to different lineages and characterized their methylomes using single-molecule real-time (SMRT) technology. We identified three m6A sequence motifs and their corresponding methyltransferase (MTase) genes, including the reported mamA, hsdM and a newly discovered mamB. We also experimentally verified the methylated motifs and functions of HsdM and MamB. Our analysis indicated the MTase activities varied between 12 strains due to mutations/deletions. Furthermore, through measuring ‘the methylated-motif-site ratio’ and ‘the methylated-read ratio’, we explored the methylation status of each modified site and sequence-read to obtain the ‘precision methylome’ of the MTBC strains, which enabled intricate analysis of MTase activity at whole-genome scale. Most unmodified sites overlapped with transcription-factor binding-regions, which might protect these sites from methylation. Overall, our findings show enormous potential for the SMRT platform to investigate the precise character of methylome, and significantly enhance our understanding of the function of DNA MTase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.