BackgroundThe present study aimed to evaluate the short-term efficacy and safety of drug-eluting beads transarterial chemoembolization (DEB-TACE) with CalliSpheres Beads loaded with doxorubicin (DOX) in the treatment of Chinese patients with hepatocellular carcinoma (HCC) compared to conventional TACE (cTACE).MethodsA total of 54 patients with HCC treated by TACE from June 2016 to February 2017 were retrospectively analyzed. These included 24 cases in the DEB-TACE group and 30 cases in the cTACE group. The clinical efficacy, tumor recurrence rate, and complications were compared between the two groups. Furthermore, liver function tests and alpha-feto protein levels were compared between the two groups before and at 1 week and 1 month after interventional treatment.ResultsThere were no significant differences in baseline characteristics (p > 0.05). Tumor response rates and disease control rates in the DEB-TACE group were significantly higher than those in the cTACE group at 3 and 6 months after treatment (p < 0.05). Recurrence rates at 6 months were significantly higher for cTACE compared to DEB-TACE (43.3 vs. 16.7%; p = 0.036). At 1 month, the AFP level in the DEB-TACE group was significantly lower than that in the cTACE group (p = 0.008). At the end of follow-up, four cases in the DEB-TACE group and two cases in the cTACE group were treated with salvage surgery after downstaging the disease. Liver function of both groups improved at 1 month. However, alanine aminotransferase, aspartate aminotransferase, and total bilirubin levels in the DEB-TACE group were better than those in the cTACE group (p < 0.05). The incidence of DOX-related complications in the DEB-TACE group was significantly lower than in the cTACE group (p < 0.05).ConclusionThe short-term efficacy of DEB-TACE is better, and the complication rates are lower compared to cTACE in the treatment of Chinese patients with HCC. However, long-term clinical efficacy and survival benefit should be analyzed in future studies.
The lack of information concerning individual variation in content and activity of human liver microsomal protein is one of the most important obstacles for designing personalized medicines. We demonstrated that the mean value of microsomal protein per gram of liver (MPPGL) was 39.46 mg/g in 128 human livers and up to 19-fold individual variations existed. Meanwhile, the metabolic activities of 10 cytochrome P450 (CYPs) were detected in microsomes and liver tissues, respectively, which showed huge individual variations (200-fold). Compared with microsomes, the activities of liver tissues were much suitable to express the individual variations of CYP activities. Furthermore, individual variations in the in vivo clearance of tolbutamide were successfully predicted with the individual parameter values. In conclusion, we offer the values for MPPGL contents in normal liver tissues and build a new method to assess the in vitro CYP activities. In addition, large individual variations exist in predicted hepatic clearance of tolbutamide. These findings provide important physiological parameters for physiologically-based pharmacokinetics models and thus, establish a solid foundation for future development of personalized medicines.
Due to a lack of physiologic cytochrome P450 (P450) isoform content, P450 activity is typically only determined at the microsomal level (per milligram of microsomal protein) and not at the isoform level (per picomole of P450 isoform), which could result in the misunderstanding of variations in P450 activity between individuals and further hinder development of personalized medicine. We found that there were large variations in protein content, mRNA levels, and intrinsic activities of the 10 P450s in 100 human liver samples, in which CYP2E1 and CYP2C9 showed the highest expression levels. P450 gene polymorphisms had different effects on activity at two levels: CYP3A5*3 and CYP2A6*9 alleles conferred increased activity at the isoform level but decreased activity at the microsomal level; CYP2C9*3 had no effect at the isoform level but decreased activity at the microsomal level. The different effects at each level stem from the different effects of each polymorphism on the resulting P450 protein. Individuals with
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.