The tremendous success of deep learning in machine fault diagnosis is dependent on the hypothesis that training and test datasets are subordinated to the same distribution. This subordination is difficult to meet in practical scenarios of industrial applications. On the one hand, the working conditions of rotating machinery can change easily. On the other hand, vibration data and labels are difficult to obtain to train a specific model for each working condition. In this study, we solve these problems by constructing a novel deep transfer learning model called multi-scale deep intra-class adaptation network, which first uses the modified ResNet-50 to extract low-level features and then constructs a multiple scale feature learner to analyze these low-level features at multiple scales and obtain high-level features as input for the classifier. Pseudo labels are then computed to shorten the conditional distribution distance of vibration data collected under different working loads for intra-class adaptation. The proposed method is validated using two datasets to recognize the bearing normal state, the inner race, the ball and outer race faults, and their fault degrees under four different working loads. The high-precision diagnosis results of 24 transfer learning experiments reveal the reliability and generalizability of the constructed model.
The bearing fault diagnosis is of vital significance in maintaining the safety of rotation machine. Among various fault detection techniques, the diagnosis based on vibration signal is widely applied in monitoring the condition of rotation machine. Variational mode decomposition (VMD) is a novel signal analysis method, which can decompose a multi-component signal into a certain number of band-limited intrinsic mode functions (BLIMFs) nonrecursively. VMD could overcome some problems such as mode mixing, the inference of noise, the determination of wavelet base, which exist in empirical mode decomposition, ensemble empirical mode decomposition, wavelet transform, respectively. However, the empirical selection of the parameters for VMD would affect the result of the decomposition. This paper presents an adaptive VMD method with parameter optimization for detecting the localized faults of rolling bearing. Kurtosis, sensitive to transient impulsive components, is employed as optimization index to evaluate the performance of the VMD. Two parameters in the VMD, namely the number of decomposition modes and data-fidelity constraint, are optimized synchronously based on the kurtosis index through artificial fish swarm algorithm. Executing VMD with the acquired parameters, the optimal BLIMF is obtained. The spectrum analysis of the optimal BLIMF could identify the characteristic frequency caused by the localized crack effectually. The validity of the proposed method is proved by means of a cyclic transient impulse response signal and two experiments with practical vibration signals of rolling bearings. Compared to several existing methods, the proposed method demonstrates reinforced results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.