Articaine BIs are no more effective than lidocaine IANBs and the decision of which method to practice should be based on patient selection, cost and time efficiency. The studies present a number of weaknesses in their design, hence, the level of evidence they provide is inconclusive. Further investigation in this field is warranted.
Aims Total knee arthroplasty is an established treatment for knee osteoarthritis with excellent long-term results, but there remains controversy about the role of uncemented prostheses. We present the long-term results of a randomized trial comparing an uncemented tantalum metal tibial component with a conventional cemented component of the same implant design. Methods Patients under the age of 70 years with symptomatic osteoarthritis of the knee were randomized to receive either an uncemented tantalum metal tibial monoblock component or a standard cemented modular component. The mean age at time of recruitment to the study was 63 years (50 to 70), 46 (51.1%) knees were in male patients, and the mean body mass index was 30.4 kg/m2 (21 to 36). The same cruciate retaining total knee system was used in both groups. All patients received an uncemented femoral component and no patients had their patella resurfaced. Patient outcomes were assessed preoperatively and postoperatively using the modified Oxford Knee Score, Knee Society Score, and 12-Item Short-Form Health Survey questionnaire (SF-12) score. Radiographs were analyzed using the American Knee Society Radiograph Evaluation score. Operative complications, reoperations, or revision surgery were recorded. A total of 90 knees were randomized and at last review 77 knees were assessed. In all, 11 patients had died and two were lost to follow-up. Results At final review all patients were between 11 and 15 years following surgery. In total, 41 of the knees were cemented and 36 uncemented. There were no revisions in the cemented group and one revision in the uncemented group for fracture. The uncemented group reported better outcomes with both statistically and clinically significant (p = 0.001) improvements in knee-specific Oxford and Knee Society scores compared with the cemented group. The global SF-12 scores demonstrated no statistical difference (p = 0.812). Uncemented knees had better radiological analysis compared with the cemented group (p < 0.001) Conclusion Use of an uncemented trabecular metal tibial implant can afford better long-term clinical outcomes when compared to cemented tibial components of a matched design. However, both have excellent survivorship up to 15 years after implantation. Cite this article: Bone Joint J 2020;102-B(8):1025–1032.
Self-Compacting Concrete (SCC) differs from the normal concrete as it has the basic capacity to consolidate under its own weight. The increased awareness regarding environmental disturbances and its hazardous effects caused by blasting and crushing procedures of stone, it becomes a delicate and obvious issue for construction industry to develop an alternative remedy as material which can reduce the environmental hazards and enable high-performance strength to the concrete, which would make it durable and efficient for work. A growing trend is being established all over the world to use industrial byproducts and domestic wastes as a useful raw material in construction, as it provides an eco-friendly edge to the construction process and especially for concrete. This study aims to enlighten the use and comparative analysis for the performance of concrete with added industrial byproducts such as Ground Granulated Blast Furnace Slag (GGBFS), Silica fumes (SF) and Marble Powder (MP) in the preparation of SCC. This paper deals with the prediction of mechanical properties (i.e., compressive, tensile and flexural Strength) of self-compacting concrete by considering four major factors such as type of additive, percentage additive replaced, curing days and temperature using Artificial Neural Networks (ANNs). way to counter the hazardous effects of such materials. By using different percentages of materials as replacement for cement in concrete mix of grade M20 (Mix ratio 1:1.5:3) and a suitable water-cement (w/c) ratio 0.40, there is a broad analysis of performance of such high strength concrete with respect to the different adding ratios by testing the mechanical properties of concrete such as its compressive strength, split tensile strength and flexural strength [2]. Fresh properties for the SCC have also been monitored and examined, including the V-Funnel test, J-Ring test and Slump test. All these were carried out for the detail examination of fresh concrete behavior. Tests for hardened concrete were carried out using samples of different ratios of materials as a replacement in hardened cylinder and cube form. Many samples were casted for the comprehensive testing process. The samples with replacement ratios of 5%, 10%, 15%, 20% and 25% are tested thoroughly to analyze the hardened properties of mixes. By the utilization of these industrial byproducts and waste materials, an elevated level of pollution treatment can be achieved by the construction industry all over the world. This induction of materials in concrete tends to provide efficient and high strength ranging concrete mixes and is eco-friendly, too [3]. Previously much discussion was had on replacement of cement with Fly Ash and Marble Powder [4-9], but Ground Granulated Blast Furnace Slag (GGBFS) [4] was limited in use. Therefore, this research has contributed the comparison of Fly Ash and Marble powder with GGBFS not only at room temperature but also at elevated temperature. Furthermore, most previous studies only major focused on compressive strength [4][5][6...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.