Abstract. The ionic liquid [MMIM][DMP] was synthesized from the reactants methyl imidazole [MIM] and trimethylphosphate [TMP] and verified using 1 HNMR and FTIR. Coconut coir dust was pretreated with a 1% alkaline solution. Its crystalline structure increased significantly due to the dissolution of lignin and hemicelluloses under alkaline conditions, exposing the cellulose. After NaOH and IL were employed, the XRD showed that peak (002) decreased significantly and peak (101) almost vanished. This significant decrease in crystallinity was related to the alteration of the substrate from the cellulose I structure to the cellulose II structure. The pretreated substrates were hydrolyzed to convert them to reducing sugars by pure cellulase and xylanase, and the reaction was conducted at 60°C, pH 3, for 12 or 48 hours. The yields of sugar hydrolyzed from untreated and NaOH-pretreated substrates were 0.07 and 0.12 g sugar/g lignocellulose, respectively. Pretreatment with IL or the combination of NaOH+IL resulted in yields of reducing sugars of 0.11 and 0.13 g/g, respectively. These findings showed that IL pretreatment of the high-lignin lignocellulose is a new prospect for the economical manufacture of reducing sugars and bioethanol in the coming years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.