The effect of a negative Poisson ratio is experimentally revealed in the tension deformation of a natural layered ceramic. This effect can increase the volume strain energy per unit volume by 1100% and, simultaneously, decrease the deformation strain energy per unit volume by about 44%, so that it effectively enhances the deformation capacity by about 1 order of magnitude in the tension of the material. The present study also shows that the physical mechanisms producing the effect are attributed to the climbing on one another of the nanostructures in the natural material, which provides a guide to the design of synthetic toughening composites.
A model for the elastic modulus of hydrate-bearing sediment (HBS) is presented considering the variation of the hydrate saturation and hydrate occurrence mode. The model is based on the classical series and parallel modes, introducing a parameter of statistical force transfer paths among particles in HBS. Macro-triaxial compression tests and micro X-ray computed tomography (CT) observations of HBS in the gas-saturated formation mode were conducted. The applicability of the model was checked through the comparison between tests and theoretical results.
Bifacial photovoltaic modules combined with horizontal single-axis tracker are widely used to achieve the lowest levelized cost of energy (LCOE). In this study, to further increase the power production of photovoltaic systems, the bifacial companion method is proposed for light supplementation and the efficiency enhancement of tilted bifacial modules with a horizontal single-axis tracker. Specifically, a solar reflector is added to the rear end of the tilted bifacial photovoltaic module to guide the sunlight and promote power generation on the rear end. The technical feasibility of the proposed method is verified through optimal calculation and prototype experimental test. The theoretical calculation results suggest that the bifacial companion system is particularly suitable for mid-to-high latitude areas. The higher the latitude, the higher the gain ratio of generated power in the system; there is an optimal module tilt angle that maximizes the efficiency at different latitudes. The closer the module tilt angle to the optimal tilt angle, the higher the power generation efficiency of the system. Meanwhile, compared to the fixed solar reflector, the use of tracking solar reflector is more conducive to improving the power generation efficiency of the system. For the 37.5° latitude area, the annual average power generation gain ratio of the bifacial companion system with tracking solar reflector and fixed solar reflector can reach up to 30% and 17%, respectively. Additionally, the test results for the three sets of bifacial companion prototypes (module tilt angles of 10°, 20°, and 30°) with a fixed solar reflector show that the maximum gain ratio of daily power generation in August 2021 are 8.2%, 13%, and 18.1%, and that in September 2021 are 7%, 8.7% and 13.7%, respectively, which are consistent with the theoretical results.
Infrared photovoltaic cells (IRPCs) have attracted considerable attention for potential applications in wireless optical power transfer (WOPT) systems. As an efficient fiber-integrated WOPT system typically uses a 1550 nm laser beam, it is essential to tune the peak conversion efficiency of IRPCs to this wavelength. However, IRPCs based on lead sulfide (PbS) colloidal quantum dots (CQDs) with an excitonic peak of 1550 nm exhibit low short circuit current (Jsc) due to insufficient absorption under monochromatic light illumination. Here, we propose comprehensive optical engineering to optimize the device structure of IRPCs based on PbS CQDs, for 1550 nm WOPT systems. The absorption by the device is enhanced by improving the transmittance of tin-doped indium oxide (ITO) in the infrared region and by utilizing the optical resonance effect in the device. Therefore, the optimized device exhibited a high short circuit current density of 37.65 mA/cm2 under 1 sun (AM 1.5G) solar illumination and 11.91 mA/cm2 under 1550 nm illumination 17.3 mW/cm2. Furthermore, the champion device achieved a record high power conversion efficiency (PCE) of 7.17% under 1 sun illumination and 10.29% under 1550 nm illumination. The PbS CQDs IRPCs under 1550 nm illumination can even light up a liquid crystal display (LCD), demonstrating application prospects in the future. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.