Background: Conogethes pinicolalis (Lepidoptera: Crambidae), is similar to Conogethes punctiferalis (yellow peach moth) and its host plant is gymnosperms , especially for masson pine. So far, less literature was reported on this pest. In the present study, we sequenced and characterized the antennal transcriptomes of male and female C. pinicolalis for the first time. Results: Totally, 26 odorant-binding protein (OBP) genes, 19 chemosensory protein (CSP) genes, 55 odorant receptor (OR) genes and 20 ionotropic receptor (IR) genes were identified from the C. pinicolalis antennae transcriptome and amino sequences were annotated against homologs of C. punctiferalis . The neighbor-joining tree indicated that the amino acid sequence of olfactory related genes is highly homologous with C. punctiferalis . Furthermore, the reference genes were selected, and we recommended the phosphate dehydrogenase gene (GAPDH) or ribosomal protein 49 gene (RP49) to verify the target gene expression during larval development stages and RP49 or ribosomal protein L13 gene (RPL13) for adult tissues. Conclusions: Our study provides a starting point on the molecular level characterization between C. pinicolalis and C. punctiferalis , which might be supportive for pest management studies in future.
Background Conogethes pinicolalis (Lepidoptera: Crambidae), is similar to Conogethes punctiferalis (yellow peach moth) and its host plant is gymnosperms, especially for masson pine. So far, less literature was reported on this pest. In present study, we sequenced and characterized the antennal transcriptomes of male and female C. pinicolalis for the first time. Results Totally, 26 odorant-binding proteins (OBP) genes, 19 chemosensory proteins (CSP) genes, 55 odorant receptors (OR) genes and 20 ionotropic receptors (IR) genes were identified from the C. pinicolalis antennae transcriptome and most of them were olfactory genes, amino sequences were annotated against homologs of C. punctiferalis. The neighbor-joining tree indicated that the amino acid sequence of olfactory related genes is highly homologous with C. punctiferalis. Furthermore, the reference genes were selected, and we strongly recommended the GAPDH or RP49 to verify gene expression for larvae development and RP49 or RPL13 for adult tissues. Conclusions Our study provides a starting point on the molecular level characterization between C. pinicolalis and C. punctiferalis, which might be a supportive for pest management studies in future.
Background
Conogethes pinicolalis (Lepidoptera: Crambidae), is similar to Conogethes punctiferalis (yellow peach moth) and its host plant is gymnosperms, especially for masson pine. So far, less literature was reported on this pest. In present study, we sequenced and characterized the antennal transcriptomes of male and female C. pinicolalis for the first time.
Results
Totally, 26 odorant-binding proteins (OBP) genes, 19 chemosensory proteins (CSP) genes, 55 odorant receptors (OR) genes and 20 ionotropic receptors (IR) genes were identified from the C. pinicolalis antennae transcriptome and most of them were olfactory genes, amino sequences were annotated against homologs of C. punctiferalis. The neighbor-joining tree indicated that the amino acid sequence of olfactory related genes is highly homologous with C. punctiferalis. Furthermore, the reference genes were selected, and we strongly recommended the GAPDH or RP49 to verify gene expression for larvae development and RP49 or RPL13 for adult tissues.
Conclusions
Our study provides a starting point on the molecular level characterization between C. pinicolalis and C. punctiferalis, which might be a supportive for pest management studies in future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.