In 2D/3D object detection task, Intersection-over-Union (IoU) has been widely employed as an evaluation metric to evaluate the performance of different detectors in the testing stage. However, during the training stage, the common distance loss (e.g., L 1 or L 2 ) is often adopted as the loss function to minimize the discrepency between the predicted and ground truth Bounding Box (Bbox). To eliminate the performance gap between training and testing, the IoU loss has been introduced for 2D object detection in [1] and [2]. Unfortunately, all these approaches only work for axis-aligned 2D Bboxes, which cannot be applied for more general object detection task with rotated Bboxes. To resolve this issue, we investigate the IoU computation for two rotated Bboxes first and then implement a unified framework, IoU loss layer for both 2D and 3D object detection tasks. By integrating the implemented IoU loss into several state-of-the-art 3D object detectors, consistent improvements have been achieved for both bird-eye-view 2D detection and point cloud 3D detection on the public KITTI [3] benchmark.
Existing LiDAR-based 3D object detectors usually focus on the single-frame detection, while ignoring the spatiotemporal information in consecutive point cloud frames. In this paper, we propose an end-to-end online 3D video object detector that operates on point cloud sequences. The proposed model comprises a spatial feature encoding component and a spatiotemporal feature aggregation component. In the former component, a novel Pillar Message Passing Network (PMPNet) is proposed to encode each discrete point cloud frame. It adaptively collects information for a pillar node from its neighbors by iterative message passing, which effectively enlarges the receptive field of the pillar feature. In the latter component, we propose an Attentive Spatiotemporal Transformer GRU (AST-GRU) to aggregate the spatiotemporal information, which enhances the conventional ConvGRU with an attentive memory gating mechanism. AST-GRU contains a Spatial Transformer Attention (STA) module and a Temporal Transformer Attention (TTA) module, which can emphasize the foreground objects and align the dynamic objects, respectively. Experimental results demonstrate that the proposed 3D video object detector achieves state-of-the-art performance on the large-scale nuScenes benchmark.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.