In this paper, we propose a novel feature extraction method for the identification of humans. The main objective of our method is to identify each human being by extracting the Gabor feature based on the Adaptive Motion Model (AMM) for the motion of humans. In our method, the adaptive motion model, which can represent the temporal motion for each walking human is first made from the sequence images and, then, the Gabor features of the eight directions which can represent the spatial motion information for humans are extracted. The proposed feature extraction method can make a more accurate motion model by adjusting the weight between the previous and current model for each person. Moreover, our method has the advantage of allowing more information such as the Gabor features for the eight directions extracted from the AMM. Since the conventional method uses the face feature for each human being, it has disadvantages in the case of images of small size, while our method has better identification performance this case, because it only uses the spatio-temporal motion information. Finally, we identify each person by finding the minimum value of the extended dynamic time warping (DTW) for the eight Gabor features. The accuracy of the identification conducted using the proposed feature is better than that of the conventional method using the Gait Energy Image (GEI) and Face Image feature.
A novel reference point detection method is proposed by exploiting the GPM(Gradient Probabilistic Model) that captures the curvature information of fingerprint texture. The detection of reference point is accomplished through searching and locating the points of occurrence of the most evenly distributed gradient in probabilistic sense. We also propose a novel filterbank method to improve shortcoming of existing filterbank method in verification part. Existing filterbank method can lose the discerning attributes because the sectors of the outer band from the reference point are larger in size than those of the inner bands. Such shortcomings of the filterbank method are resolved by maintaining the attribute regions to equal size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.