Detecting moving objects in a video sequence is an important problem in many vision-based applications. In particular, detecting moving objects when the camera is moving is a difficult problem. In this study, we propose a symmetric method for detecting moving objects in the presence of a dynamic background. First, a background compensation method is used to detect the proposed region of motion. Next, in order to accurately locate the moving objects, we propose a convolutional neural network-based method called YOLOv3-SOD for detecting all objects in the image, which is lightweight and specifically designed for small objects. Finally, the moving objects are determined by fusing the results obtained by motion detection and object detection. Missed detections are recalled according to the temporal and spatial information in adjacent frames. A dataset is not currently available specifically for moving object detection and recognition, and thus, we have released the MDR105 dataset comprising three classes with 105 videos. Our experiments demonstrated that the proposed algorithm can accurately detect moving objects in various scenarios with good overall performance.
Murine behavior recognition is widely used in biology, neuroscience, pharmacology, and other aspects of research, and provides a basis for judging the psychological and physiological state of mice. To solve the problem whereby traditional behavior recognition methods only model behavioral changes in mice over time or space, we propose a symmetrical algorithm that can capture spatiotemporal information based on behavioral changes. The algorithm first uses the improved DeepLabCut keypoint detection algorithm to locate the nose, left ear, right ear, and tail root of the mouse, and then uses the ConvLSTM network to extract spatiotemporal information from the keypoint feature map sequence to classify five behaviors of mice: walking straight, resting, grooming, standing upright, and turning. We developed a murine keypoint detection and behavior recognition dataset, and experiments showed that the method achieved a percentage of correct keypoints (PCK) of 87±1% at three scales and against four backgrounds, while the classification accuracy for the five kinds of behaviors reached 93±1%. The proposed method is thus accurate for keypoint detection and behavior recognition, and is a useful tool for murine motion behavior recognition.
In this work, we propose a symmetry approach and design a convolutional neural network for mouse pose estimation under scale variation. The backbone adopts the UNet structure, uses the residual network to extract features, and adds the ASPP module into the appropriate residual units to expand the perceptual field, and uses the deep and shallow feature fusion to fuse and process the features at multiple scales to capture the various spatial relationships related to body parts to improve the recognition accuracy of the model. Finally, a set of prediction results based on heat map and coordinate offset is generated. We used our own built mouse dataset and obtained state-of-the-art results on the dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.