This paper proposes a combined microwave and ultrasonic technique that aims to extract the refractory mineralogical properties of complex zinc ore. This technique consists of two steps: microwave-assisted phase transformation and ultrasonic-assisted complexation leaching. During the microwave-assisted phase transformation step, the refractory zinc phases transform into manageable phases using doping oxidation agents. In the ultrasonic-assisted complexation leaching step, the effect of NTA3 on Zn2+ species distribution is explored. The results show that microwave roasting with 20% Na2O2 at 600 °C for 15 min adequately transforms ZnS, ZnCO3 and Zn2SiO4 into ZnO and avoids the generation of Zn2SiO4. Further, 0.5 mol/L NTA3− (nitrilotriacetic acid) is especially effective as a complex additive for complexes with Zn2+ as Zn (NTA)24−. The ultrasonic technique can reduce the diffusion resistance and open the products in the leaching process, improving zinc leaching by 4.7%. The degree of zinc recovered from zinc ore can reach 91.4% when leach is assisted with 225 W ultrasonic force at 80 °C for 75 min. This paper shows great potential for the green extraction of non-traditional zinc-containing resources.
In the process of zinc smelting, when the chloride ion concentration exceeds 100 mg/L, it continuously corrodes the electrode plate and affects the stability of the electrodeposition process. Therefore, the chloride concentration must be reduced below 100 mg/L. Compared with other methods used to control the reactions of Cu(II), the use of the copper slag produced in zinc smelting without other additives does not cause reverse dissolution; to reduce the cost, turn the waste into treasure, and protect the environment, research was carried out on chloride removal by the copper slag via a synergistic valence control process. In this study, the influencing factors, such as the amount of copper slag, the reaction time, and reaction temperature, were systematically investigated. The results showed that the optimum dechlorination conditions were as follows: the copper: copper(II): chloride molar ratio was 6:5:1, the reaction time was 60 min, and the reaction temperature was 20 °C. The chloride ion concentration was decreased from 1.6 g/L to 0.05 g/L, the dechlorination efficiency was 96.875%, and the residual chloride ion concentration was less than 100 mg/L, which provides a basis for industrial use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.