Vehicles or pedestrians tracking is an important task in intelligent transportation system. In this paper, we propose an online multi‐object tracking for intelligent traffic platform that employs improved sparse representation and structural constraint. We first build the spatial‐temporal constraint via the geometric relations and appearance of tracked objects, then we construct a robust appearance model by incorporating the discriminative sparse representation with weight constraint and local sparse appearance with occlusion analysis. Finally, we complete data association by using maximum a posteriori in a Bayesian framework in the pursuit for the optimal detection estimation. Experimental results in two challenging vehicle tracking benchmark datasets show that the proposed method has a good tracking performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.