Multi-criteria analysis of optimal signal plans using microscopic traffic models. AbstractIncreasing concerns on environment and natural resources, coupled with increasing demand for transport, put lots of pressure for improved efficiency and performance on transport systems worldwide. New technology nowadays enables fast innovation in transport, but it is the policy for deployment and operation with a systems perspective that often determines success. Smart traffic management has played important roles for continuous development of traffic systems especially in urban areas. There is, however, still lack of effort in current traffic management and planning practice prioritizing policy goals in environment and energy. This paper presents an application of a model-based framework to quantify environmental impacts and fuel efficiency of road traffic, and to evaluate optimal signal plans with respect not only to traffic mobility performance but also other important measures for sustainability. Microscopic traffic simulator is integrated with micro-scale emission model for estimation of emissions and fuel consumption at high resolution. A stochastic optimization engine is implemented to facilitate optimal signal planning for different policy goals, including delay, stop-and-goes, fuel economy etc. In order to enhance the validity of the modeling framework, both traffic and emission models are fine-tuned using data collected in a Chinese city. In addition, two microscopic traffic models are applied, and lead to consistent results for signal optimization. Two control schemes, fixed time and vehicle actuated, are optimized while multiple performance indexes are analyzed and compared for corresponding objectives. Solutions, representing compromise between different policies, are also obtained in the case study by optimizing an integrated performance index.
A group-based traffic signal control with adaptive learning ability. Engineering applications of artificial intelligenceAccess to the published version may require subscription. N.B. When citing this work, cite the original published paper. AbstractGroup-based control is an advanced traffic signal strategy capable of dynamically generating phase sequences at intersection. Combined with the phasing scheme, vehicle actuated timing is often adopted to respond to the detected traffic. However, the parameters of a signal controller are often predetermined in practice, and the control performance may suffer from deterioration when dealing with highly fluctuating traffic demand. This study proposes a groupbased signal control approach capable of making decisions based on its understanding of traffic conditions at the intersection level. In particular, the control problem is formulated using a framework of stochastic optimal control for multi-agent system in which each signal group is modeled as an intelligent agent. The agents learn how to react to traffic environment and make optimal timing decisions according to the perceived system states. Reinforcement learning, enhanced by multiple-step backups, is applied as the kernel of the intelligent control algorithm, where each agent updates its knowledge on-line based on a sequence of states during the process. In addition, the proposed system is designated to be compatible with the prevailing signal system. A case study was carried out in a simulation environment to compare the proposed control approach with a benchmark controller used in practice, group-based vehicle actuated (GBVA) controller, whose parameters were off-line optimized using a genetic algorithm. Simulation results show that the proposed adaptive group-based control system outperforms the optimized GBVA control system mainly because of its real-time adaptive learning capacity in response to the changes of traffic demand.
An intelligent control system for traffic lights with simulation-based evaluation. Practice, https://doi.org/10. 1016/j.conengprac.2016.09.009 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. In order to evaluate the effects of FITS system, this study attempts to develop a computational framework to evaluate FITS system using microscopic traffic simulation. A case study is carried out, comparing different commonly used signal control strategies with the FITS control approach. The simulation results show that the control system has the potential to improve traffic mobility, compared to all of the tested signal control strategies, due to its ability in generating flexible phase structures and making intelligent timing decisions. In addition, the effects of detector malfunction are also investigated in this study. The experiment results show that FITS exhibits superior performance than several other controllers when a few detectors are out-of-order due to its self-diagnostics feature. Control Engineering
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.