The immunologic factors have been implicated in the pathogenesis of osteonecrosis. We aimed to investigate the potential role of immune regulatory cells in the development of osteonecrosis of femoral head (ONFH). Sixty-seven patients diagnosed with ONFH and fifty-eight age-, height-, and weight-matched healthy subjects were included in this retrospective study between September 2015 and September 2018. The flow cytometry was used to test the count, percentage, and ratio of T and B lymphocyte subsets in peripheral blood. The T and B lymphocyte levels were compared among different ARCO stages, CJFH types, and etiology groups. The total lymphocyte count, CD3+T cells, Ts cells (CD3+CD8+), B-1 cell count, and B-1 cells (CD5+CD19+) were significantly higher in the patients with ONFH than those in the control subjects. The percentage of T lymphocytes in the patients with ARCO IV stage was significantly smaller than that in the ONFH patients with ARCO II and III stages. The percentage of inhibitory T lymphocytes in patients with CJFH type L3 was significantly smaller than that in the patients with types L1 and L2. In terms of the different ONFH etiologies, the total lymphocyte count and Ts cells (CD3+CD8+) were significantly lower in the ONFH patients induced by excessive alcohol intake than those in the idiopathic ONFH patients. Our results seem to indicate that immune regulatory cells, such as T and B lymphocytes, play an important role in the pathogenesis of ONFH. The development and progression of ONFH may be associated with immune system imbalance.
Purpose The study aims to investigate the accuracy of different radiographic signs for predicting functional deficiency of anterior cruciate ligament (ACL) and test whether the prediction model constructed by integrating multiple radiographic signs can improve the predictive ability. Methods A total number of 122 patients from January 1, 2018, to September 1, 2021, were enrolled in this study. Among them, 96 patients were classified as the ACL-functional (ACLF) group, while 26 patients as the ACL-deficient (ACLD) group after the assessment of magnetic resonance imaging (MRI) and the Lachman’s test. Radiographic measurements, including the maximum wear point of the proximal tibia% (MWPPT%), tibial spine sign (TSS), coronal tibiofemoral subluxation (CTFS), hip–knee–ankle angle (HKA), mechanical proximal tibial angle (mPTA), mechanical lateral distal femoral angle (mLDFA) and posterior tibial slope (PTS) were measured using X-rays and compared between ACLF and ACLD group using univariate analysis. Significant variables (p < 0.05) in univariate analysis were further analyzed using multiple logistic regression analysis and a logistic regression model was also constructed by multivariable regression with generalized estimating models. Receiver-operating-characteristic (ROC) curve and area under the curve (AUC) were used to determine the cut-off value and the diagnostic accuracy of radiographic measurements and the logistic regression model. Results MWPPT% (odds ratio (OR) = 1.383, 95% confidence interval (CI) = 1.193–1.603, p < 0.001), HKA (OR = 1.326, 95%CI = 1.051–1.673, p = 0.017) and PTS (OR = 1.981, 95%CI = 1.207–3.253, p = 0.007) were shown as predictive indicators of ACLD, while age, sex, side, TSS, CTFS, mPTA and mLDFA were not. A predictive model (risk score = -27.147 + [0.342*MWPPT%] + [0.282*HKA] + [0.684*PTS]) of ACLD using the three significant imaging indicators was constructed through multiple logistic regression analysis. The cut-off values of MWPPT%, HKA, PTS and the predictive model were 52.4% (sensitivity:92.3%; specificity:83.3%), 8.5° (sensitivity: 61.5%; specificity: 77.1%), 9.6° (sensitivity: 69.2%; specificity: 78.2%) and 0.1 (sensitivity: 96.2%; specificity: 79.2%) with the AUC (95%CI) values of 0.906 (0.829–0.983), 0.703 (0.574–0.832), 0.740 (0.621–0.860) and 0.949 (0.912–0.986) in the ROC curve. Conclusion MWPPT% (> 52.4%), PTS (> 9.6°), and HKA (> 8.5°) were found to be predictive factors for ACLD, and MWPPT% had the highest sensitivity of the three factors. Therefore, MWPPT% can be used as a screening tool, while the model can be used as a diagnostic tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.