Rice (Oryza sativa) is one of the most important cereal crops in the world, and yield-related agronomic traits, including plant height (PH), panicle length (PL), and protein content (PC), are prerequisites for attaining the desired yield and quality in breeding programs. Meanwhile, the main effects and epistatic effects of quantitative trait nucleotides (QTNs) are all important genetic components for yield-related quantitative traits. In this study, we conducted genome-wide association studies (GWAS) for 413 rice germplasm resources, with 36,901 single nucleotide polymorphisms (SNPs), to identify QTNs, QTN-by-QTN interaction (QQI), and their candidate genes, using a multi-locus compressed variance component mixed model, 3VmrMLM. As a result, two significant QTNs and 56 paired QQIs were detected, amongst 5219 genes of these QTNs, and 26 genes were identified as the yield-related confirmed genes, such as LCRN1, OsSPL3, and OsVOZ1 for PH, and LOG and QsBZR1 for PL. To reveal the substantial contributions related to the variation of yield-related agronomic traits in rice, we further implemented an enrichment analysis and expression analysis. As the results showed, 114 genes, nearly all significant QQIs, were involved in 37 GO terms; for example, the macromolecule metabolic process (GO:0043170), intracellular part (GO:0044424), and binding (GO:0005488). It was revealed that most of the QQIs and the candidate genes were significantly involved in the biological process, molecular function, and cellular component of the target traits. The demonstrated genetic interactions play a critical role in yield-related agronomic traits of rice, and such epistatic interactions contributed to large portions of the missing heritability in GWAS. These results help us to understand the genetic basis underlying the inheritance of the three yield-related agronomic traits and provide implications for rice improvement.
Currently a hot topic, genomic selection (GS) has consistently provided powerful support for breeding studies and achieved more comprehensive and reliable selection in animal and plant breeding. GS estimates the effects of all single nucleotide polymorphisms (SNPs) and thereby predicts the genomic estimation of breeding value (GEBV), accelerating breeding progress and overcoming the limitations of conventional breeding. The successful application of GS primarily depends on the accuracy of the GEBV. Adopting appropriate advanced algorithms to improve the accuracy of the GEBV is time-saving and efficient for breeders, and the available algorithms can be further improved in the big data era. In this study, we develop a new algorithm under the Bayesian Shrinkage Regression (BSR, which is called BayesA) framework, an improved expectation-maximization algorithm for BayesA (emBAI). The emBAI algorithm first corrects the polygenic and environmental noise and then calculates the GEBV by emBayesA. We conduct two simulation experiments and a real dataset analysis for flowering time-related Arabidopsis phenotypes to validate the new algorithm. Compared to established methods, emBAI is more powerful in terms of prediction accuracy, mean square error (MSE), mean absolute error (MAE), the area under the receiver operating characteristic curve (AUC) and correlation of prediction in simulation studies. In addition, emBAI performs well under the increasing genetic background. The analysis of the Arabidopsis real dataset further illustrates the benefits of emBAI for genomic prediction according to prediction accuracy, MSE, MAE and correlation of prediction. Furthermore, the new method shows the advantages of significant loci detection and effect coefficient estimation, which are confirmed by The Arabidopsis Information Resource (TAIR) gene bank. In conclusion, the emBAI algorithm provides powerful support for GS in high-dimensional genomic datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.