There is widespread potential for human exposure to disinfection byproducts (DBPs) in drinking water because everyone drinks, bathes, cooks, and cleans with water. The need for clean and safe water led the U.S. Congress to pass the Safe Drinking Water Act more than 20 years ago in 1974. In 1976, chloroform, a trihalomethane (THM) and a principal DBP, was shown to be carcinogenic in rodents. This prompted the U.S. Environmental Protection Agency (U.S. EPA) in 1979 to develop a drinking water rule that would provide guidance on the levels of THMs allowed in drinking water. Further concern was raised by epidemiology studies suggesting a weak association between the consumption of chlorinated drinking water and the occurrence of bladder, colon, and rectal cancer. In 1992 the U.S. EPA initiated a negotiated rulemaking to evaluate the need for additional controls for microbial pathogens and DBPs. The goal was to develop an approach that would reduce the level of exposure from disinfectants and DBPs without undermining the control of microbial pathogens. The product of these deliberations was a proposed stage 1 DBP rule. It was agreed that additional information was necessary on how to optimize the use of disinfectants while maintaining control of pathogens before further controls to reduce exposure beyond stage 1 were warranted. In response to this need, the U.S. EPA developed a 5-year research plan to support the development of the longer term rules to control microbial pathogens and DBPs. A considerable body of toxicologic data has been developed on DBPs that occur in the drinking water, but the main emphasis has been on THMs. Given the complexity of the problem and the need for additional data to support the drinking water DBP rules, the U.S. EPA, the National Institute of Environmental Health Sciences, and the U.S. Army are working together to develop a comprehensive biologic and mechanistic DBP database. Selected DBPs will be tested using 2-year toxicity and carcinogenicity studies in standard rodent models; transgenic mouse models and small fish models; in vitro mechanistic and toxicokinetic studies; and reproductive, immunotoxicity, and developmental studies. The goal is to create a toxicity database that reflects a wide range of DBPs resulting from different disinfection practices. This paper describes the approach developed by these agencies to provide the information needed to make scientifically based regulatory decisions.
Cancer is a complex disease that involves the accumulation of both genetic and epigenetic alterations of numerous genes. Data in the Genetic Alterations in Cancer database for gene mutations and allelic loss [loss of heterozygosity (LOH)] in human tumors (e.g. lung, oral, esophagus, stomach and colon/rectum) were reviewed. Results for the genes and pathways implicated in tumor development at these sites are presented. Mutation incidence, spectra and codon specificity are described for lung, larynx and oral tumors. LOH occurred more frequently than gene mutations in tumors from all sites examined. The cell cycle gene, TP53 (all sites), and cell signaling gene, APC (colorectal and gastric cancers), were the only genes with similar incidences of LOH and mutation. Alterations of one or more cell cycle and cell signaling genes were reported for tumors from each site. Site-specific activation was apparent in the cell signaling mitogen-activated protein kinase oncogenes (KRAS in lung, HRAS in oral cancers and BRAF in esophageal and colorectal cancers). Analysis of genetic changes in lung tumors showed that the incidence of mutations in the TP53 and KRAS genes and the incidence of LOH in the FHIT gene were significantly greater in smokers versus non-smokers (P < 0.01). In lung and oral cancers, the TP53 GC --> TA transversion frequency increased with tobacco smoke exposure (P < 0.05). Furthermore, the TP53 mutational hot spots for lung and laryngeal cancers from smokers included codons 157, 245 and 273, whereas for oral tumors included codons 280 and 281.
These results suggest that organic byproducts of chlorination are the chemicals of greatest concern in assessment of the carcinogenic potential of chlorinated drinking water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.