The difficulty in Schottky barrier height (SBH) control arising from Fermi-level pinning (FLP) at electrical contacts is a bottleneck in designing high-performance nanoscale electronics and optoelectronics based on molybdenum disulfide (MoS). For electrical contacts of multilayered MoS, the Fermi level on the metal side is strongly pinned near the conduction-band edge of MoS, which makes most MoS-channel field-effect transistors (MoS FETs) exhibit n-type transfer characteristics regardless of their source/drain (S/D) contact metals. In this work, SBH engineering is conducted to control the SBH of electrical top contacts of multilayered MoS by introducing a metal-interlayer-semiconductor (MIS) structure which induces the Fermi-level unpinning by a reduction of metal-induced gap states (MIGS). An ultrathin titanium dioxide (TiO) interlayer is inserted between the metal contact and the multilayered MoS to alleviate FLP and tune the SBH at the S/D contacts of multilayered MoS FETs. A significant alleviation of FLP is demonstrated as MIS structures with 1 nm thick TiO interlayers are introduced into the S/D contacts. Consequently, the pinning factor ( S) increases from 0.02 for metal-semiconductor (MS) contacts to 0.24 for MIS contacts, and the controllable SBH range is widened from 37 meV (50-87 meV) to 344 meV (107-451 meV). Furthermore, the Fermi-level unpinning effect is reinforced as the interlayer becomes thicker. This work widens the scope for modifying electrical characteristics of contacts by providing a platform to control the SBH through a simple process as well as understanding of the FLP at the electrical top contacts of multilayered MoS.
Tungsten ditelluride (WTe2) is a layered material that exhibits excellent magnetoresistance and thermoelectric behaviors, which are deeply related with its distorted orthorhombic phase that may critically affect the lattice dynamics of this material. Here, we report comprehensive characterization of Raman spectra of WTe2 from bulk to monolayer using experimental and computational methods. We find that mono and bi-layer WTe2 are easily identified by Raman spectroscopy since two or one Raman modes that are observed in higher-layer WTe2 are greatly suppressed below the noise level in the mono- and bi-layer WTe2, respectively. In addition, the frequency of in-plane A1(7) mode of WTe2 remains almost constant as the layer number decreases, while all the other Raman modes consistently blueshift, which is completely different from the vibrational behavior of hexagonal metal dichalcogenides. First-principles calculation validates experimental results and reveals that anomalous lattice vibrations in WTe2 are attributed to the formation of tungsten chains that make WTe2 structurally one-dimensional.
Mono‐ and few‐layer transition metal dichalcogenides (TMDCs) have been widely used as saturable absorbers for ultrashort laser pulse generation, but their preparation is complicated and requires much expertise. The possible use of bulk‐structured TMDCs as saturable absorbers is therefore a very intriguing and technically important issue in laser technology. Here, for the first time, it is demonstrated that defective, bulk‐structured WTe2 microflakes can serve as a base saturable absorption material for fast mode‐lockers that can produce femtosecond pulses from fiber laser cavities. They have a modulation depth of 2.85%, from which stable laser pulses with a duration of 770 fs are readily obtained at a repetition rate of 13.98 MHz and a wavelength of 1556.2 nm, which is comparable to the performance achieved using mono‐ and few‐layer TMDCs. Density functional theory calculations show that the oxidative and defective surfaces of WTe2 microflakes do not degrade their saturable absorption performance in the near‐infrared range, allowing for a broad range of operative bandwidth. This study suggests that saturable absorption is an intrinsic property of TMDCs without relying on their structural dimensionality, providing a new direction for the development of TMDC‐based saturable absorbers.
Most materials and devices with structurally switchable color features responsive to external stimuli can actively and flexibly display various colors. However, realizing covert–overt transformation behavior, especially switching between transparent and colored states, is more challenging. A composite laminate of soft poly(dimethylsiloxane) (PDMS) with a rigid SiO2‐nanoparticle (NP) structure pattern is developed as a multidimensional structural color platform. Owing to the similarity in the optical properties of PDMS and SiO2 NPs, this device is fully transparent in the normal state. However, as their mechanical strengths differ considerably, upon compressive loading, a buckling‐type instability arises on the surface of the laminate, leading to the generation of 1D or 2D wrinkled patterns in the form of gratings. Finally, an application of the device in which quick response codes are displayed or hidden as covert–overt convertible colored patterns for optical encryption/decryption, showing their remarkable potential for anticounterfeiting applications, is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.