The rapid increase in the quantity of customer data has promoted the necessity to analyse these data. Recent progress in text mining has enabled analysis of unstructured text data such as customer suggestions, customer complaints and customer feedback. Much research has been attempted to use insights gained from text mining to identify customer needs to guide development of market-oriented products. However, the previous research has a drawback that identifies limited customer needs based on product features. To overcome the limitation, this paper presents application of text mining analysis of customer complaints to identify customers' true needs by using the Outcome-Driven Innovation (ODI) method. This paper provides a method to analyse customer complaints by using the concept of job. The ODI-based analysis contributes to identification of customer latent needs during the pre-execution and post-execution steps of product use by customers that previous methods cannot discover. To explain how the proposed method can identify customer requirements, we present a case study of stand-type air conditioners. The analysis identified two needs that experts had not identified but regarded as important. This research helps to identify requirements of all the points at which customers want to obtain help from the product.
Identifying product attributes from the perspective of a customer is essential to measure the satisfaction, importance, and Kano category of each product attribute for product design. This paper proposes automated keyword filtering to identify product attributes from online customer reviews based on latent Dirichlet allocation. The preprocessing for latent Dirichlet allocation is important because it affects the results of topic modeling; however, previous research performed latent Dirichlet allocation either without removing noise keywords or by manually eliminating them. The proposed method improves the preprocessing for latent Dirichlet allocation by conducting automated filtering to remove the noise keywords that are not related to the product. A case study of Android smartphones is performed to validate the proposed method. The performance of the latent Dirichlet allocation by the proposed method is compared to that of a previous method, and according to the latent Dirichlet allocation results, the former exhibits a higher performance than the latter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.