The application of membrane electrode assemblies is considered a promising approach for increasing the energy efficiency of conventional alkaline water electrolysis. However, previous investigations have mostly focused on improving membrane conductivity and electrocatalyst activity. This study reports an all-in-one membrane electrode assembly obtained by de novo design. The introduction of a porous membrane readily enables the oriented intergrowth of ordered catalyst layers using solvothermal methods, leading to the formation of an all-in-one MEA for alkaline water electrolysis. This all-in-one MEA features ordered catalyst layers with large surface areas, a low-tortuosity pore structure, integrated catalyst layer/membrane interfaces, and a well-ordered OH- transfer channel. Owing to this design, a high current density of 1000 mA cm−2 is obtained at 1.57 V in 30 wt% KOH, resulting in a 94% energy efficiency. This work highlights the prospects of all-in-one membrane electrode assemblies in designing next-generation high-performance alkaline water electrolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.